Skip to main content

Wave Drag in the Planetary Boundary Layer Over Complex Terrain

  • Chapter
Boundary Layer Studies and Applications
  • 242 Accesses

Abstract

The concepts of mountain-induced wave drag are applied to the smaller scale problem of the boundary layer over complex terrain. It is found that the Reynolds stress and surface drag caused by surface-generated waves can be at least as large as those conventionally associated with turbulence. Conditions in which wave effects are important are identified.

ATDD Contribution No. 88/5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berkowitz, R.: 1984, ‘Spectral Methods of Atmospheric Diffusion Modeling’, Boundary-Layer Meteorol 30, 201–220.

    Article  Google Scholar 

  • Booker, J. R. and Bretherton, F. P.: 1967, ‘The Critical Level for Internal Gravity Waves in a Shear Flow’, J. Fluid Mech. 27, 513–539.

    Article  Google Scholar 

  • Bretherton, F. P.: 1969, ‘Momentum Transport by Gravity Waves’, Q.J.R. Meteorol. Soc. 95, 213–243.

    Article  Google Scholar 

  • Cermak, J. E.: 1984, ‘Physical Modeling of Flow and Dispersion Over Complex Terrain’, Boundary-Layer Meteorol. 30, 261–292.

    Article  Google Scholar 

  • Chimonas, G.: 1972, ‘The Stability of a Coupled Wave-Turbulence System in a Parallel Shear Flow’, Boundary-Layer Meteorol. 2, 444–452.

    Article  Google Scholar 

  • Egan, B. A.: 1984, ‘Transport and Diffusion in Complex Terrain’, Boundary-Layer Meteorol. 30, 3–38.

    Article  Google Scholar 

  • Einaudi, F. and Finnigan, J. J.: 1981, ‘The Interaction Between an Internal Gravity Wave and the Planetary Boundary Layer. Part 1: The Linear Analysis’, Q.J.R. MeteoroL Soc. 107, 793–806.

    Article  Google Scholar 

  • Fritts, D. C: 1984, ‘Gravity Wave Saturation in the Middle Atmosphere: A Review of Theory and Observations’, Rev. Geophys. Space Phys. 22, 275–308.

    Article  Google Scholar 

  • Gifford, F. A.: 1984, ‘The Random Force Theory: Application to Meso-and Large-Scale Atmospheric Diffusion’, Boundary-Layer Meteorol. 30, 159–175.

    Article  Google Scholar 

  • Gossard, E. E., Gayner, J. E., Zamora, R. J., and Neff, W. D.: 1985, ‘Fine Structure of Elevated Stable Layers Observed by Sounder and in situ Tower Sensors’, J. Atmos. Sci. 42, 2156–2169.

    Article  Google Scholar 

  • Hines, C. O.: 1960, ‘Internal Gravity Waves at Ionospheric Heights’, Can. J. Phys. 38, 1441–1481.

    Article  Google Scholar 

  • Hootman, D. K. and Blumen, W.: 1983, ‘Analysis of Nighttime Drainage Winds in Boulder, CO During 1980’, Mon. Weather Rev. 111, 1052–1061.

    Article  Google Scholar 

  • Hunt, J. C. R. and Richards, K. J.: 1984, ‘Stratified Airflow Over One or Two Hills’, Boundary-Layer Meteorol. 30, 223–259.

    Article  Google Scholar 

  • Lindzen, R. S.: 1967, ‘Thermally Driven Diurnal Tide in the Atmosphere’, Q.J.R. MeteoroL Soc. 93, 18–32.

    Article  Google Scholar 

  • Lindzen, R. S.: 1981, ‘Turbulence and Stress Due to Gravity Wave and Tidal Breakdown’, J. Geophys. Res. 86, 9707–9714.

    Article  Google Scholar 

  • Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’, J. Atmos. Sci. 42, 2333–2349.

    Article  Google Scholar 

  • Miles, J. W.: 1961, ‘On the Stability of Heterogeneous Shear Flow’, J. Fluid Mech. 10, 496–508.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘Some Aspects of the Turbulent Stable Boundary Layer’, Boundary-Layer Meteorol. 30, 31–38.

    Article  Google Scholar 

  • Orlanski, I.: 1972, ‘On the Breaking of Standing Internal Gravity Waves’, J. Fluid Mech. 54, 577–589.

    Article  Google Scholar 

  • Smith, R. B.: 1976, ‘The Generation of Lee Waves by the Blue Ridge’, J. Atmos. Sci. 33, 507–519.

    Article  Google Scholar 

  • Sutton, O. G.: 1955, ‘Micrometeorology’, Robert E. Krieger Publishing Co., N.Y. Reprint 1977.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Izumi, Y.: 1971, ‘Local Free Convection Similarity and the Budgets of Shear Stress and Heat Flux’, J. Atmos. Sci. 28, 1171–1182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. E. Munn

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Chimonas, G., Nappo, C.J. (1989). Wave Drag in the Planetary Boundary Layer Over Complex Terrain. In: Munn, R.E. (eds) Boundary Layer Studies and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0975-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0975-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6928-1

  • Online ISBN: 978-94-009-0975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics