Skip to main content

Steady State Creep and Vibrocreep in Orthotropic Composite Materials

  • Chapter
Composite Structures 5
  • 460 Accesses

Abstract

A general constitutive equation for steady-state creep deformation is presented based on the concept of dissipation potential. The material parameters required to characterize the stationary static creep behaviour of an orthotropic composite are obtained from the unidirectional tension creep tests and biaxial tension—shear creep tests performed on a glass—xylok woven fabric composite. If an oscillatory load is superimposed on a sustained loading the steady creep rate changes depending on the oscillatory frequency. This effect is shown by conducting biaxial tests with the shear force possessing both static and dynamic components. In order to describe the alteration of the creep rate in the presence of dynamic fluctuations the static dissipation potential is modified to take account of the frequency effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sturgeon, J. B., Creep of fibre reinforced thermosetting resins. In Creep of Engineering Materials, ed. C. D. Pomeroy. Mechanical Engineering Publications Ltd, London, 1978, pp. 175–95.

    Google Scholar 

  2. Darlington, M. W. and Turner, S., Creep of thermoplastics. In Creep of Engineering Materials, ed. C.D. Pomeroy. Mechanical Engineering Publications Ltd, London, 1978, pp. 197–214.

    Google Scholar 

  3. Brinson, H. F. and Dillard, D. A., The prediction of long-term viscoelastic properties of fiber reinforced plastics. In Progress in Science and Engineering of Composites, Proc. ICCM4, ed. T. Hayashi, K. Kawata and S. Umekawa. Japan Society for Composite Materials, 1982, Vol. 1, pp. 195–202.

    Google Scholar 

  4. Dillard, D. A. and Brinson, H. F., A numerical procedure for predicting creep and delayed failures in laminated composites. ASTM STP 813, ed. T. K. O’Brien. Philadelphia, 1983, pp. 23–37.

    Google Scholar 

  5. Schapery, R. A., Application of thermodynamics to thermomechanical fracture and birefringent phenomenon in viscoelastic media. J. Appl. Phys., 35(5) (1964) 1451–65.

    Article  Google Scholar 

  6. Schapery, R. A. and Lou, Y. C, Viscoelastic characterization of nonlinear fiber reinforced plastics. J. Comp. Mater., 5 (1971) 208–34.

    Article  Google Scholar 

  7. Schaffer, B. G. and Adams, D. F, Nonlinear viscoelastic analysis of a unidirectional composite material. J. Appl. Mech., 48 (1981) 859–65.

    Article  CAS  Google Scholar 

  8. Pyrz, R., Governing equations for the steady-state creep in orthotropic materials. Acta Medianica, 68 (1987) 251–63.

    Article  Google Scholar 

  9. Pyrz, R., Description of steady-state creep in orthotropic materials. In Mechanical Characterisation of Fibre Composite Materials, ed. R. Pyrz. University of Aalborg, 1986, pp. 197–212.

    Google Scholar 

  10. Pyrz, R., Strength reduction of woven glass fabric composite after creep deformation. In Proc. 6th ICCM & 2nd ECCM, Vol. 4, ed. F. L. Matthews, N. C. R. Buskell, J. M. Hodgkinson and J. Morton. Elsevier Applied Science, London, 1987, pp. 272–7.

    Google Scholar 

  11. Sturgeon, J. B., Creep, repeated loading, fatigue and crack growth in ±45° oriented carbon fibre reinforced plastics. J. Mater. Sci., 13 (1978) 1490–8.

    Article  CAS  Google Scholar 

  12. Boehler, J. P., A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy. ZAMM, 59 (1979) 157–67.

    Article  Google Scholar 

  13. Spencer, A. J. M., Theory of invariants. In Continuum Physics, ed. A.C. Eringen. Academic Press, New York-London, 1971, pp. 239–353.

    Google Scholar 

  14. Boyle, J. T. and Spenge, J., Stress Analysis for Creep. Butterworths, London, 1983.

    Google Scholar 

  15. Shrivastave, H. P., Mróz, Z. and Dubey, R. N., Yield criterion and the hardening rule for plastic solids. ZAMM, 53 (1973) 625–33.

    Article  Google Scholar 

  16. Ellyin, F. and Neale, K. W., Effect of cyclic loading on the yield surface. J. Pres. Ves. Technol., 101 (1979) 59–63.

    Article  Google Scholar 

  17. Dafalias, Y. F, Anisotropic hardening of initially orthotropic materials. ZAMM, 59 (1979) 437–46.

    Article  Google Scholar 

  18. Ikagemi, K., Experimental plasticity on the anisotropy of metals. In Mechanical Behaviour of Anisotropic Solids, ed. J. P. Boehler. Martinus Nijhoff Publishers, 1982, pp. 201–41.

    Google Scholar 

  19. Rees, D. W. A., Yield functions that account for the effects of initial and subsequent plastic anisotropy. Acta Mechanica, 43 (1982) 223–41.

    Article  Google Scholar 

  20. Rees, D. W. A., An examination of yield surface distortion and translation. Acta Medianica, 52 (1984) 15–40.

    Article  Google Scholar 

  21. Boehler, J. P., On a rational formulation of isotropic and anisotropic hardening. In Plasticity Today, ed. A. Sawczuk and G. Bianchi. Elsevier Applied Science, London, 1985, pp. 483–502.

    Google Scholar 

  22. Gupta, N. K. and Meyers, A., Description of initial and subsequent yield surface. ZAMM, 66 (1986) 435–9.

    Article  Google Scholar 

  23. Potter, R. T., Repeated loading and creep effects in shear property measurements on unidirectional CFRP. Composites, 4 (1974) 261–5.

    Article  Google Scholar 

  24. Schultz, J. M. and Friedrich, K., Effect of temperature and strain rate on the strength of a PET/glass fibre composite. J. Mater. Sci., 19 (1984) 2246–58.

    Article  CAS  Google Scholar 

  25. Highsmith, A. L., Stinchcomb, W. W. and Reifsnider, K. L., Effect of fatigue-induced defects on the residual response of composite laminates. In Effects of Defects in Composite Materials. ASTM STP 836, 1984, pp. 194–216.

    Google Scholar 

  26. Christensen, B., Johannesson, H. and Koefoed, B., Creep in Woven-Fabric Composite Materials. MS Thesis, University of Aalborg, June 1987 (in Danish).

    Google Scholar 

  27. Zawadzki, J. (ed.), Fatigue and Strength of Polymers. Scientific Publishers, Warsaw, 1978 (in Polish).

    Google Scholar 

  28. Sun, C. T. and Chan, W. S., Frequency effect on the fatigue life of a laminated composite. In Composite Materials: Testing and Design. ASTM STP 674, ed. S. W. Tsai. ASTM, 1979, pp. 418–30.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Pyrz, R. (1989). Steady State Creep and Vibrocreep in Orthotropic Composite Materials. In: Marshall, I.H. (eds) Composite Structures 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1125-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1125-3_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6998-4

  • Online ISBN: 978-94-009-1125-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics