Skip to main content

New Insights into the Evolution of Proteins

  • Chapter
Molecules in Physics, Chemistry, and Biology

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 4))

Abstract

Despite the fact that the name ‘proteins’ means primordial molecules, they have apparently been supplanted as directors of life by genes, the nucleic acids being the vectors of heredity. Any change to become hereditary must, by some means or other, enter the genome, in other words must modify the long nucleotide sequence determining the developing program. Information is inscribed in genes as a one- dimensional reading system, and the deoxyribonucleic acids that constitute the genes are therefore long linear molecules, like cassette tape ribbons. But the living order is three-dimensional and the translation or transferance from a nucleotide sequence (nucleic acid) to an amino acid sequence (protein) is in fact a passage from one-dimensional to three-dimensional system, and therefore essentially a morphogenic mechanism. In contrast to nucleotide sequences, amino acid sequences spontaneously generate specific shapes depending upon the order of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Gilbert: ‘Why gene in pieces?’ Nature 271, 501 (1978)

    Article  CAS  Google Scholar 

  2. L. Patthy: ‘Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules’, Cell 4, 657–663 (1985).

    Article  Google Scholar 

  3. L. Sottrup Jensen, H. Claeys, M. Zajdel, T. E. Petersen, and S. Magnusson: ‘The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “mini”-plasminogen (MW 38.000) by elastase-catalyzed-specific limited proteolysis’. In Progress in Chemical Fibrinolysis and Thrombolysis, Vol. 3 (J. F. Davidson, R. M. Rowan, M. M. Sama, and P. C. Desnoyers, Eds.), Raven Press, New York, pp. 191–209 (1978).

    Google Scholar 

  4. H. Neurath: ‘Evolution of proteolytic enzymes’, Science 224, 350–357 (1984).

    Article  CAS  Google Scholar 

  5. R. Acher: ‘Chemistry of the neurohypophysial hormones: an example of molecular evolution’. In Handbook of Physiology, Section 7, Endocrinology, Vol IV, Part 1 (E. Knobil and W. H. Sawyer, Eds.), pp. 119–130(1974).

    Google Scholar 

  6. M. J. Brownstein, J. T. Russell, and H. Gainer: ‘Synthesis, transport and release of posterior pituitary hormones’, Science 207, 373–378 (1980).

    Article  CAS  Google Scholar 

  7. M. T. Chauvet, J. Chauvet, R. Acher, D. Dunde, and A. N. Thorn: ‘Structure of a guinea pig common precursor to a MSEL-type neurophysin and copeptin’, Mol. Cell Endocrinol. 44, 243–249(1986).

    Article  CAS  Google Scholar 

  8. H. Land, G. Schiitz, H. Schmale, and D. Richter: ‘Nucleotide sequence of a cloned cDNA encoding bovine arginine vasopressin neurophysin II precursor’, Nature 295, 299–303 (1982).

    Article  CAS  Google Scholar 

  9. H. Land, M. Grez, S. Ruppert, H. Schmale, M. Rehbein, D. Richter, and G. Schutz: ‘Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA’, Nature 302, 343–344(1983).

    Article  Google Scholar 

  10. R. Acher: ‘Neurophysin and neurohypophysial hormones’, Proc. Roy. Soc. B. 170, 7–16 (1968).

    Article  CAS  Google Scholar 

  11. R. Acher: ‘Molecular evolution of biologically active polypeptides’, Proc. Roy. Soc. B. 210, 21 – 43(1980).

    Article  CAS  Google Scholar 

  12. M. T. Chauvet, F. Hurpet, G. Michel, J. Chauvet, and R. Acher: ‘Two multigene families for marsupial neurohypophysial hormones? Identification of oxytocin, mesotocin, lysipressin and arginine vasopressin in the North American opossum (Didelphis virginiana)’ Biochem. Biophys. Res. Commun. 123, 306–311 (1984).

    Article  CAS  Google Scholar 

  13. R. Acher: ‘Neurophysins: molecular and cellular aspects’, Angew. Chem. Int. Ed. Engl. 18, 846–860(1979).

    Article  CAS  Google Scholar 

  14. R. Ivell and D. Richter: ‘Structure and comparison of the oxytocin and vasopressin genes from rat’, Proc. Natl. Acad. Sci. 81, 2006–2010 (1984).

    Article  CAS  Google Scholar 

  15. .S. Ruppert, G. Scherer, and G. Schutz: ‘Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence’, Nature 308, 554–557(1984)

    Article  CAS  Google Scholar 

  16. E. Sausville, D. Carney, and J. Battey: ‘The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer line’, J. Biol. Chem. 260, 10236– 10241 (1985).

    CAS  Google Scholar 

  17. .D. Baltimore: ‘Gene conversion: some implications for immunoglobulin gene’, Cell 24, 592– 594(1981).

    Article  CAS  Google Scholar 

  18. J. Scott, M. Urdea, M. Quiroga, R. Sanchez-Pescador, N. Fong, M. Selby, W. J. Rutter, and G. I. Bell: ‘Structure of a mouse submaxillary messenger RNA encoding Epidermal Growth Factor and seven related proteins’, Science 221, 236–240 (1983).

    Article  CAS  Google Scholar 

  19. A. Ullrich, J. R. Bell, E. Y. Chen, R. Herrera, L. M. Petruzzelli, T. J. Dull, A. Gray, L. Coussens, Y. C. Liao, M. Tsubokawa, A. Mason, P. H. Seeburg, C. Grunfeld, O. M. Rosen, and J. Ramachandran: ‘Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes’, Nature 313, 756–761 (1985).

    Article  CAS  Google Scholar 

  20. H.-D. Stahl, P. E. Crewther, R. F. Anders, G. V. Brown, R. L. Coppel, A. E. Bianco, G. F. Mitchell, D. J. Kemp: ‘Interspersed blocks of repetitive and charged amino acids in a dominant immunogen of Plasmodium falciparum’, Proc. Natl. Acad. Sci. USA 82, 543–54 (1985).

    Article  CAS  Google Scholar 

  21. S. J. Friezner Degen, R. T. A. Macgillivray, and E. W. Davie: ‘Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin’, Biochemistry 22, 2087–2097(1983).

    Article  Google Scholar 

  22. K. Skorstengaard, M. S. Jensen, T. E. Petersen, and S. Magnusson: ‘Purification and complete primary structures of the heparin-, cell-, and DNA-binding domains of bovine plasma fibronectin’, Eur. J. Biochem. 154,15–29 (1986).

    Article  CAS  Google Scholar 

  23. V. M. Ingram:The Hemoglobins in Genetics and Evolution. Number XXII of the Columbia Biological Series, Columbia University Press, New York and London (1963).

    Google Scholar 

  24. A. J. Jeffreys, S. Harris, P. A. Barrie, D. Wood, A. Blanchetot, and S. M. Adams: ‘Evolution of gene families: the globin genes’. In Evolution from Molecules to Men (D. S. Bendall, Ed.), Darwin College, Cambridge University Press, pp. 174–208 (1983).

    Google Scholar 

  25. M. F. Perutz: ‘Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron’, Ann. Rev. Biochem. 48, 327–386 (1979).

    Article  CAS  Google Scholar 

  26. J. Giraudat, A. Devillers-Thiery, C. Auffray, F. Rougeon, and J. P. Changeux: ‘Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor’, EMBOJ. 1, 713 (1982).

    CAS  Google Scholar 

  27. M. Noda, H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, Y. Furutani, T. Hirose, H. Takashima, S. Inayama, T. Miyata, and S. Numa: ‘Structural homology of Torpedo californica acetylcholine receptor subunits’, Nature 302, 528–532 (1983).

    Article  CAS  Google Scholar 

  28. M. Mishina, T. Kurosaki, T. Tobimatsu, Y. Morimoto, M. Noda, T. Yamamoto, M. Terao, J. Lindstrom, T. Takahashi, M. Kuno, and S. Numa: ‘Expression of functional acetylcholine receptor from cloned cDNAs’, Nature 307, 604–608 (1984).

    Article  CAS  Google Scholar 

  29. B. Sakmann, C. Methfessel, M. Mishina, T. Takahashi, T. Takai, M. Kurasaki, K. Kufuda, and S. Numa: ‘Role of acetylcholine receptor subunits in gating of the channel’, Nature 318, 538–543 (1985).

    Article  CAS  Google Scholar 

  30. M. Kimura: ‘DNA and the neutral theory’, Phil. Trans. R. Soc. Lond. B 312, 343–354 (1986).

    Article  CAS  Google Scholar 

  31. W. F. Doolittle and C. Sapienza: ‘Selfish genes, the phenotype paradigm and genome evolution’, Nature 284, 601–603 (1980).

    Article  CAS  Google Scholar 

  32. K. Skortengaard, M. S. Jensen, P. Sahl, T. E. Pedersen, and S. Magnusson: ‘Complete primary structure of bovine plasma fibronectin’, Eur. J. Biochem. 161,441–453 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht, The Netherlands.

About this chapter

Cite this chapter

Acher, R. (1989). New Insights into the Evolution of Proteins. In: Maruani, J. (eds) Molecules in Physics, Chemistry, and Biology. Topics in Molecular Organization and Engineering, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1173-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1173-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2599-8

  • Online ISBN: 978-94-009-1173-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics