Skip to main content

Fatigue and Microstructure

  • Chapter
High Temperature Alloys

Abstract

The full potential of engineering materials to resist fatigue damage and failure is never approached in current high temperature components and structures. Various microstructure and design related limitations contribute to the gap between the intrinsic fatigue potential of materials and the equivalent component behaviour. Uncertainties with respect to the service conditions and our inability to correctly predict service performance on the basis of laboratory test data, force the designer to use safety factors. The safety factors are applied to the lower bound of the scatterband which, by itself, results from the intra- and interheat variability of the microstructure as well as from a lack of tightness in the application of testing standards. The present paper, in dealing with the microstructural limitations of the fatigue resistance, focusses attention on the intrinsic fatigue potential of materials and on ways to optimise it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hornbogen E., Zum Gahr K.H., Metallography 8 (1975) 181.

    Article  CAS  Google Scholar 

  2. Laird C., “Plastic Deformation of Materials”, Arsenault R.J., ed., Academic Press (1975) p. 101.

    Google Scholar 

  3. Mughrabi H., Proc. 5th ICSMA, vol. 3 (1979) p. 1615.

    Google Scholar 

  4. Kuhlmann-Wilsdorf D., Laird C., Mat. Sci. Eng. 46 (1980) 209.

    Article  CAS  Google Scholar 

  5. Mughrabi H., Wang R., “Deformation of Polycrystals: Mechanisms and Microstructures”, Proc. 2nd Risø International Symposium on Metallurgy and Materials Science, Sept. 1981, p. 87.

    Google Scholar 

  6. Stoltz R.E., Pineau A.G., Mat. Sci. Eng. 34 (1978) 275.

    Article  CAS  Google Scholar 

  7. Laird C., “Fatigue and Microstructures”, ASM, 1979, p. 149.

    Google Scholar 

  8. Mughrabi H., “Deformation of Multiphase and Particle Containing Materials”, Proc. 4th Risø International Symposium on Metallurgy and Materials Science, Sept. 1983, p. 65.

    Google Scholar 

  9. Ermi A.M., Moteff J., Met. Trans. 13A (1982) 1577.

    Google Scholar 

  10. Donadille C., Essadiqi L., Pernot M., Penelle R., Lacombe P., Proc. 5th ICSMA, vol. 3 (1979) p. 1107.

    Google Scholar 

  11. Jones W.B., Allen R.M., Met. Trans. 13A (1982) 637.

    Google Scholar 

  12. Schusser U., Tambuyser P., Bressers J., to be published.

    Google Scholar 

  13. Vingsbo O., Lagerberg G., Hansson B., Bergström Y., Phil. Mag. 17 (1968) 441.

    Article  CAS  Google Scholar 

  14. Gorlier C., Amzallag C., Rieux P., Driver J.H. “Fatigue 1984”, Beevers C.J. ed., EMAS, vol I (1984) p. 41.

    Google Scholar 

  15. Amzallag C., Rabbé P., Gallet G., Lieurade H.P., Mém. Sci. Rev. Met. 75 (1978) 161.

    CAS  Google Scholar 

  16. Donadille C., Penelle R., “Deformation of Poly crystals: Mechanisms and Microstructures”, Proc. 2nd Risø Internat. Symposium on Metallurgy and Materials Science, Sept. 1981, p. 425.

    Google Scholar 

  17. Tomkins B., “Creep and Fatigue in High-Temperature Alloys”, J. Bressers ed., Applied Science Publ., 1981, p. 73.

    Google Scholar 

  18. Lukás P., Polák J., “Work Hardening in Tension and in Fatigue”, Thompson H.W. ed., Science Centre Rockwell Int., 1976, p. 176.

    Google Scholar 

  19. Calabrese C., Laird C., Mat. Sci. Eng. 13 (1974) 141.

    Article  CAS  Google Scholar 

  20. Pineau A.G., “Fatigue at High Temperature”, Skelton R.P. ed., Applied Science, 1983, p. 305.

    Google Scholar 

  21. Antolovich S.D., Jayaraman N., High Temperature Technology 2 (1984) 3.

    CAS  Google Scholar 

  22. Rémy L., Pineau A., Thomas B., Mat. Sci. Eng. 36 (1978) 47.

    Article  Google Scholar 

  23. Karashima S., Murayama K., Ono N., Trans. Jpn. Inst. Met. 15 (1974) 265.

    CAS  Google Scholar 

  24. Challenger K.D., Moteff J., “Fatigue at Elevated Temperatures”, ASTM STP 520, 1973, p. 63.

    Google Scholar 

  25. Michel D.J., Moteff J., Lovell A.J., Acta Met. 21 (1973) 1269.

    Article  CAS  Google Scholar 

  26. Nahm A.H., Moteff J., Acta Met. 25 (1977) 107.

    Article  CAS  Google Scholar 

  27. Nahm A.H., Moteff J., Met. Trans. 12A (1981) 1011.

    Google Scholar 

  28. Moteff J., “Fatigue: Environment and Temperature Effects”, Burke J.J. and Weiss V. eds., Plenum Press 1983, p. 192.

    Google Scholar 

  29. Bressers J., Roth M., Tambuyser P., Fenske E. Final Report COST 50-II, EUR 8162, 1982.

    Google Scholar 

  30. Wells C.H., Sullivan C.P., Trans. ASM 60 (1970) 217.

    Google Scholar 

  31. Coffin Jr. L.F., Met. Trans. 2 (1971) 3105.

    CAS  Google Scholar 

  32. Kanazawa K., Yamaguchi K., Nishijima S, “Conference on Low-Cycle Fatigue: Directions for the Future”, Lake George, Sept. 30–Oct. 4, 1985.

    Google Scholar 

  33. Degallaix S., Taillard R., Foct J., “Fatigue 84”, vol 1, 1984, p. 49.

    Google Scholar 

  34. Degallaix S., Degallaix G., Foct J., “Conference on Low-Cycle Fatigue: Directions for the Future”, Lake George, Sept. 30–Oct. 4, 1985.

    Google Scholar 

  35. Namura H., Kishimoto Y., Shibata K., Fujita T., ISIJ 23 (1981) B142.

    Google Scholar 

  36. Nillson J.O., Fat. Engng. Mater. Struct. 7 (1984) 55.

    Article  Google Scholar 

  37. Nillson J.O., Scripta Met. 17 (1983) 593.

    Article  Google Scholar 

  38. Hall E.O. “Yield Point Phenomena in Metals and Alloys” McMillan, 1970.

    Google Scholar 

  39. Mulford R.A., Kocks L.F., Acta Met. 27 (1979) 1125.

    Article  CAS  Google Scholar 

  40. Hayes R.W., Hayes W.C., Acta Met. 30 (1982) 1295.

    Article  Google Scholar 

  41. Pelloux R.M., Stoltz R.E., Proc. ICSMA4, Nancy 1976, vol. 3, p. 1023.

    CAS  Google Scholar 

  42. Starke E.A., Lütjering G., “Fatigue and Microstructure”, A.S.M. 1979, p. 205.

    Google Scholar 

  43. Martin J.W., Edwards L., “Micromechanisms of Plasticity and Fracture”, M.H. Lewis and D.M.R. Taplin eds., S.M. Publications, University of Waterloo Press, 1983, p. 333.

    Google Scholar 

  44. Brown L.M., Proc. ICSMA 5, Aachen 1979, p. 1551.

    Google Scholar 

  45. Gräf M., Hornbogen E., Scripta Met. 12 (1978) 147.

    Article  Google Scholar 

  46. Hornbogen E., Thumann M., Verpoort C., Proc. First Intern. Conf. on Shot Peening, Pergamon Press, 1982, p. 381.

    Google Scholar 

  47. Wang Renzhi, Zhang Xuecong, Sing Deyn, Yin Yuanfa, Proc. First Intern. Conf. on Shot Peening, Pergamon Press, 1982, p. 395.

    Google Scholar 

  48. Kim Y.G., Merrick H.F., “Superalloys 1980”, ASM, 1980, p. 551.

    Google Scholar 

  49. Klesnil M., Holzmann M., Lukas P., Rys R., J. Iron Steel Inst. 203 (1965) 47.

    CAS  Google Scholar 

  50. Merrick H.F., Maxwell D.H., Gibson R.C., ASTM STP 520, 1973, p. 285.

    CAS  Google Scholar 

  51. Taira S., Tanaka K., Hoshina M., ASTM STP 675, 1979, p. 135.

    Google Scholar 

  52. Fine M.E., Met. Trans. 11A (1980) 365.

    CAS  Google Scholar 

  53. Bressers J., Schusser U., Fenske E., De Cat R., COST 501, final report, April 1986 (in press).

    Google Scholar 

  54. Lütjering G., Döker H., Munz D., Proc. ICSMA 3, Cambridge, vol. 1 (1973) p. 427.

    Google Scholar 

  55. Edwards L., Martin J.W., Proc. ICF-5, Cannes, vol. 1, 1981, p. 323.

    Google Scholar 

  56. Morris W.L., Buck O., Marcus H.L., Met. Trans, 7A (1976) 1161.

    CAS  Google Scholar 

  57. Kung C.Y., Fine M.E., Met. Trans. 10A (1979) 603.

    CAS  Google Scholar 

  58. James M.R., Morris W.L., Mat. Sci. Eng. 56 (1982) 63.

    Article  CAS  Google Scholar 

  59. Grosskreutz J.C., Proc. Air Force Conf. on Fatigue and Fracture of Aircraft Structures and Materials, AFFDL TR 70-144, Miami Beach, Dec. 1969.

    Google Scholar 

  60. Lankford J., Intern. Metals Reviews, Sept. 1977, 221.

    Google Scholar 

  61. Eid N.M.A., Thomason P.F., Acta Met. 27 (1979) 1239.

    Article  CAS  Google Scholar 

  62. Chang R., Morris W.L., Buck O., Scripta Met. 13 (1979) 191.

    Article  Google Scholar 

  63. Tanaka K., Mura T., Met. Trans. 13A (1982) 117.

    CAS  Google Scholar 

  64. Gell M., Leverant G.R., Acta Met. 16 (1968) 553.

    Article  CAS  Google Scholar 

  65. Burke M.A., Beck C.G., Crombie E.A., “Superalloys 1984”, Met. Soc. AIME, 1984, p. 63.

    Google Scholar 

  66. Scheider K., Gnirss G., “High Temperature Alloys for Gas Turbines”, Brunetaud et al. eds., D. Reidel Publ., 1982, p. 319.

    Google Scholar 

  67. McColvin G.M., “High Temperature Alloys for Gas Turbines”, D. Coutsouradis et al. eds., Applied Science Publ., 1978, p. 599.

    Google Scholar 

  68. Hoffelner W., Metall.Trans. 13A (1982) 1245.

    Google Scholar 

  69. Bhanu Sankara Rao K., Valsan M., Sandhya R., Mannan S.C., Rodriguez P., ICF-6, New Delhi, Dec. 1984.

    Google Scholar 

  70. Shih C.I., “High Temperature Low-Cycle Fatigue Mechanisms for a Ni-base and a Cu-base Alloy”, Report NASA CR-3543, 1982.

    Google Scholar 

  71. Jablonski D.A., Mat. Sci. Eng. 8 (1981) 189.

    Article  Google Scholar 

  72. Miner R.V., Dreshfield R.L., Met. Trans. 12A (1981) 261.

    Google Scholar 

  73. Hyzak J.M., Bernstein I.M., Met. Trans. 13A (1982) 33 and Met. Trans. 13A (1982) 45.

    CAS  Google Scholar 

  74. König G., Track W., Betz., Metal Powder Report 38 (1983) 19.

    Google Scholar 

  75. Harkegard G., Engrg. Fract. Mech. 6 (1974) 795.

    Article  CAS  Google Scholar 

  76. Donnell L.H., “Theodore von Karman Anniversary Vol.”, Cal. Inst. of Tech., Pasadena (1941) p. 293.

    Google Scholar 

  77. Goods S.H., Brown L.M., Acta Met. 27 (1979) 1.

    Article  CAS  Google Scholar 

  78. Argon A.S., “Recent Advances in Creep and Fracture of Engineering Materials and Structures”, B. Wilshire and D.R.J. Owen eds., Pineridge Press, Swansea 1982, p. 1.

    Google Scholar 

  79. Tang N.Y., Plumtree A., Z. Metallkde 76 (1985) 46.

    CAS  Google Scholar 

  80. Dyson B.F., Loveday M.S., Rogers M.J., Proc. Roy. Soc. A349 (1976) 245.

    Google Scholar 

  81. Kikuchi M., Shiozawa K., Weertman J.R., Acta Met. 29 (1981) 1747.

    Article  CAS  Google Scholar 

  82. Barlow C.Y., “Deformation of Multiphase and Particle Containing Materials”, Proc. 4th Ris International Symposium on Metallurgy and Materials Science, Sept. 1983, p. 139.

    Google Scholar 

  83. Shiozawa K., Weertman J.R., Scripta Met. 16 (1982) 715.

    Article  Google Scholar 

  84. Scaife E.C., James P.C., Met. Sci. J. 2 (1968) 217.

    Google Scholar 

  85. Bricknell R.H., Woodford D.A., “Creep and Fracture of Engineering Materials and Structures”, B. Wilshire and D.R.J. Owen eds., Pineridge Press, 1981, p. 249.

    Google Scholar 

  86. Dyson B.F., Acta Met. 30 (1982) 1639.

    Article  CAS  Google Scholar 

  87. Dyson B.F., Hondros E.D. in “Advances in Fracture Research”, eds. S.R. Valluri et al., vol. 6, 1985.

    Google Scholar 

  88. Raj R., Journal of Engineering Materials and Technology, April 1976, 132.

    Google Scholar 

  89. Taplin D.M.R., Collins A.L.W., Ann. Rev. Mater. Sci., 8 (1978) 235.

    Article  CAS  Google Scholar 

  90. Sidey D., Coffin L.F. Jr, “Fatigue Mechanisms”, ASTM STP 675, 1978, p. 528.

    Google Scholar 

  91. Gerold V., Symposium “Ermüdungsverbalten metallischer Werkstoffe”, Bad Nauheim, Sept. 1984.

    Google Scholar 

  92. Min B.K., Raj R., Acta Met. 26 (1978) 1007.

    Article  CAS  Google Scholar 

  93. Min B.K., Raj R., Canad. Metall. Quart. 18 (1979) 171.

    Google Scholar 

  94. Baik S., Raj R., Met. Trans. 13A (1982) 1215.

    Google Scholar 

  95. Runkle J.C., Pelloux R.M., “Fatigue Mechanisms”, ASTM STP 675, ASTM 1979, p. 501.

    Google Scholar 

  96. Lim L.C., Raj R., Acta Met. 32 (1984) 727.

    Article  CAS  Google Scholar 

  97. Duquette D.J., Review on Coatings and Corrosion, Vol. 1 (1974) 187.

    Google Scholar 

  98. Cook R.H., Skelton R.P., Internat. Metall. Rev. 19 (1979) 199.

    Google Scholar 

  99. Ericsson T., Canad. Metall. Quart. 18 (1979) 177.

    CAS  Google Scholar 

  100. Verkin B.I., Grinberg N.M., Mater. Sci. Eng. 14 (1979) 149.

    Google Scholar 

  101. Danek G.J., Smith H.H., Achter M.R., Proc. ASTM 61 (1961) 775.

    Google Scholar 

  102. Duquette D.J., Gell M., Met. Trans. 3 (1972) 1899.

    Article  CAS  Google Scholar 

  103. Smith H.H., Shahinian P., Achter M.R., Trans. Am. Inst. Min. Engrs. 245 (1969) 947.

    Google Scholar 

  104. Coffin L.F. “Corrosion Fatigue”, Nat. Ass. Corr. Eng., Houston 1972, p. 590.

    Google Scholar 

  105. Bressers J., Roth M., Proc. ASME Internat. Conf. on Advances in Life Prediction Methods, D.A. Woodford, J.R. Whitehead eds, ASME, New York 1983, p. 85.

    Google Scholar 

  106. Brinkman C.R., “Fatigue:Environmental and Temperature Effects”, J.J. Burke and V. Weiss eds, Plenum Press, N.Y. 1983, p. 241.

    Google Scholar 

  107. Duquette D.J., “Environment sensitive fracture of engineering materials”, Z.A. Foroulised, Met. Soc. AIME, 1979, p. 521.

    Google Scholar 

  108. Fujita F.E., Acta Met. 6 (1958) 543.

    Article  Google Scholar 

  109. Thompson N., Wadsworth M.J., Louat N., Phil. Mag. 1 (1956) 113.

    Article  CAS  Google Scholar 

  110. Shen H., Podlaseck S.E., Kramer I.K., Acta Met. 14 (1966) 341.

    Article  CAS  Google Scholar 

  111. Coffin L.F., Proc. ICF3, Munich, 1973, p. 441.

    Google Scholar 

  112. Reuchet J., Remy L., Mater. Sci. Eng. 58 (1983) 19.

    Article  CAS  Google Scholar 

  113. Strang E., Lang E., “High Temperature Alloys for Gas Turbines”, Brunetaud et al., eds, D. Reidel Publ. Comp., 1982, p. 469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Bressers, J. (1987). Fatigue and Microstructure. In: Marriott, J.B., Merz, M., Nihoul, J., Ward, J. (eds) High Temperature Alloys. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1347-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1347-9_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7099-7

  • Online ISBN: 978-94-009-1347-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics