Skip to main content

Synthesis and characterization of molecular structure

  • Chapter
Ionomers

Abstract

Nature has attributed a critical role to ionic forces not only in the formation of the inorganic world of minerals and silicate glasses, but also in life cycles, where ionic interactions of biopolymers are responsible for vital biomembrane processes (Ahlers et al., 1990). Man has been successfully applying the concept of ionic interactions in order to modify the properties of polymers, which are the most versatile group of known materials. When polymers are considered, it might be argued that they can be divided into just two categories: ionic polymers and the others which have the potential of being ionically modified, occasionally referred to as ionogenic polymers. It is the purpose of this chapter to report essentially on the most representative pathways to ion-containing polymers, with the aim of providing the reader with background information and with the most recent trends in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlers, M. et al. (1990). Specific interactions of proteins with functional lipids monolayers—ways of simulating biomembrane processes. Angew. Chem., Int. ED. Engl. 29(11): 1269–85.

    Google Scholar 

  • Alexander, R.R. (1984). Ionic oligomers: their structure, value and use. High Solids Coat. 9(4): 10–13.

    CAS  Google Scholar 

  • Allcock, H.R. (1992). Rational design and synthesis of new polymeric materials. Science 255: 1106–12.

    CAS  Google Scholar 

  • Amass, A.J. et al. (1972). Anionic graft copolymerization of ethylene-propylene terpolymers. Europ. Polym. J. 8(6): 781–7.

    CAS  Google Scholar 

  • Antonietti, M., Heyne, J., and Sillescu, H. (1991). Telechelic polystyrene α,ω-macrozwitterions. 1. Synthesis and characterization. Makromol. Chem. 192(12): 3021–34.

    CAS  Google Scholar 

  • Bagrodia, S., Wilkes, G.L., and Kennedy, J.P. (1986). New polyisobutylene-based model elastomeric ionomers: rheological behavior. Polym. Eng. Sci. 26(10): 662–72.

    CAS  Google Scholar 

  • Bailey, W.J. et al. (1984). Synthesis of functionally-terminated oligomers by free radical ring-opening polymerization. J. Macromol. Sci.-Chem. A71(8–9): 879–95.

    Google Scholar 

  • Bailey, W.J. (1989). Ring opening polymerization. In Comprehensive Polymer Science. Vol. 3. Chain Polymerization, Part I, ed. G. Allen, and J.C. Bevington, pp. 292–3. Oxford: Pergamon Press.

    Google Scholar 

  • Banthia, A.K., Webster, D.C., and McGrath, J.E. (1980). Synthesis and characterization of polyaryl ether containing block copolymers. Org. Coat. Plast. Chem. 42: 127–30.

    CAS  Google Scholar 

  • Banthia, A.K. et al. (1989). Synthesis, characterization, and evaluation of telechelic acrylate oligomers and related toughened epoxy networks. In Adv. Chem. Ser. Symp. Series 222, ed. C.K. Riew, pp. 343–58. Washington DC: American Chemical Society.

    Google Scholar 

  • Belfiore, L.A., Shah, R.J., and Cheng, C. (1989). Solid-state NMR investigation of random copolymers and ionomers containing ethylene and methacrylic acid. Contemp. Top. Polym. Sci. 6: 619–38.

    CAS  Google Scholar 

  • Bevington, J.C., Ebdon, J.R., and Huckerby T.N. (1985). An appraisal of NMR methods for study of end-groups derived from initiators in radical polymerization. Europ. Polym. J. 21(8): 685–94.

    CAS  Google Scholar 

  • Boileau, S. (1992). Phase transfer catalyzed polycondensation. InNew Methods for Polymer Synthesis, ed. W.J. Mijs, Chap. 6. New York: Plenum.

    Google Scholar 

  • Brookman, P.J., and Nicholson, J.W. (1986). Ionic polymer membranes. In Developments in Ionic Polymers — 2, ed. A.D. Wilson, and H.J. Prosser, pp. 267–302. London and New York: Elsevier.

    Google Scholar 

  • Brown, H.P. (1957). Carboxylic elastomers. Rubber Chem. Tech. 30(5): 1347–86.

    CAS  Google Scholar 

  • Broze, G., Jérôme, R., and Teyssié, Ph. (1982). Halato-telechelic polymers. 4. Synthesis and dilute-solution behavior. Macromolecules 15(3): 920–7.

    CAS  Google Scholar 

  • Broze, G., Jérôme, R., and Teyssié, Ph. (1983). Halato-telechelic Polymers. IX. Some specific properties of dicarboxylato polymers based on group IVB metal ions. J. Polym. Sci., Polym. Letters 21(4): 237–41.

    CAS  Google Scholar 

  • Butler, G.B. et al. (1970). Linear polymers from diene monomers by the cyclic polymerization mechanism. XI. Polyphosphonium salts via cyclopolymerization. J. Macromol. Sci.-Chem. A4(6): 1437–51.

    Google Scholar 

  • Butler, G.B. (1980). The chemistry and properties of poly(diallylammonium salts). In Polymeric Amines and Ammonium Salts, ed. E.J. Goethals, pp. 125–42. Oxford: Pergamon Press.

    Google Scholar 

  • Charlier, P. et al. (1990a). Viscoelastic properties of telechelic ionomers. 2. Complexed α,ω-diamino polydienes. Macromolecules 23(13): 3313–21.

    CAS  Google Scholar 

  • Charlier, P., Jérôme, R., and Teyssié, Ph. (1990b). Solution behavior of α,β-(dimethylamino)-polyisoprene coordinated to transition metal salts. Macromolecules 23(6): 1831–7.

    CAS  Google Scholar 

  • Charlier, P. et al. (1991). Viscoelastic properties of immiscible telechelic polymer blends: Effect of mutual coordinative interactions of the end-groups. Polym. Networks Blends 1(1): 27–35.

    CAS  Google Scholar 

  • Charlier, P. et al. (1992a). Viscoelastic properties of immiscible telechelic polymer blends: Effect of acid-base interactions. Macromolecules 25(10): 2651–6.

    CAS  Google Scholar 

  • Charlier, P., Jérôme, R., and Teyssié, Ph. (1992b). Viscoelastic properties of telechelic ionomers. 2. Quaternized α,ω-bis(dimethylamino)polyisoprene. Macromolecules 25(2): 617–24.

    CAS  Google Scholar 

  • Chujo, Y., Hiraiwa, A., and Yamashita, Y. (1984). Synthesis of segmented copolyamides by using telechelic prepolymers. Makromol. Chem. 185(10): 2077–87.

    CAS  Google Scholar 

  • Clas, S.-D., and Eisenberg, A. (1986a). Synthesis and bulk physical properties of styrene-alkoxide ionomers. Part I: Sodium salts of poly(styrene-co-4-hydroxystyrene). J. Polym. Sci. Polym. Phys. 24(12): 2743–56.

    CAS  Google Scholar 

  • Clas, S.-D., and Eisenberg, A. (1986b). Synthesis and bulk physical properties of styrene-alkoxide ionomers. Part II: Sodium salts of poly(styrene-co-4-hydroxymethylstyrene). J. Polym. Sci. Polym. Phys. 24(12): 2757–66.

    CAS  Google Scholar 

  • Cohen, P. et al. (1982). Reaction of living poly-THF with amines. 4. Primary amines. Polymer 23(9): 1350–4.

    CAS  Google Scholar 

  • Cunneen, J.I., Moore, C.G., and Shephard, B.R. (1960). New methods of crosslinking natural rubber. Part I. The introduction of carboxylic acid and ester groups into natural rubber and their subsequent utilization for crosslinking. J. Appl. Polym. Sci. 3(7): 11–19.

    CAS  Google Scholar 

  • Davidson, N.S. et al. (1988). Association behavior in end-functionalized polymers. 1. Dilute solution properties of polyisoprenes with amine and zwitterion end groups. Macromolecules 21(1): 112–21.

    CAS  Google Scholar 

  • Deleens, G., Foy, P., and Maréchal, E. (1977). Synthèse et caractérisation de copolycondensats séquencés poly(amide-séq-éther) I. Synthèse et étude de divers oligomères difonctionnels du poly(amide-ll). Europ. Polym. J. 13(5): 337–42.

    CAS  Google Scholar 

  • DeMejo, L., McKnight, W.J., and Vogl, O. (1978). Poly(alkylene oxide) ionomers: 1. copolymerization of trioxane by gas phase mixing of comonomers and initiator. Polymer 19(8): 956–62.

    CAS  Google Scholar 

  • DePorter, C.D. et al. (1989). Synthesis and characterization of well-defined acrylic ion-containing di- and triblock copolymers. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 30(1): 201–3.

    CAS  Google Scholar 

  • Desjardins, A., and Eisenberg, A. (1991). Colloidal properties of block ionomers. 1. Characterization of reverse micelles of styrene-b-metal methacrylate diblocks by size-exclusion chromatography. Macromolecules 24(21): 5779–90.

    CAS  Google Scholar 

  • Ding, Y.S. et al. (1989). Synthesis and characterization of sulphonated polyurethane ionomers based on toluene diisocyanate. Polymer 30(7): 1204–12.

    CAS  Google Scholar 

  • Ebdon, J.R., Flint, N.J., and Hodge, P. (1989). Preparation of terminally functionalized (telechelic) methyl methacrylate oligomers by the oxidative cleavage of statistical methyl methacrylate/diene copolymers with ozone. Eur. Polym. J. 25(7–8): 759–65.

    CAS  Google Scholar 

  • Eisenbach, C.D., Schnecko, H., and Kern, W. (1975). Ûber Makrozwitterionen. 10. Versuche zur Darstellung von Makrozwitterionen aus α,ω-bifunktionellem Poly(a-methylstyrol). Makromol. Chem. 176: 1587–1609.

    CAS  Google Scholar 

  • Eisenberg, A., and Navratil, M. (1973). Ion clustering and viscoelastic relaxation in styrene-based ionomers. II. Effect of ion concentration. Macromolecules 6(4): 604–12.

    CAS  Google Scholar 

  • Eisenberg, A., and King, M. (1977). Ion-Containing Polymers, Physical Properties and Structure. New York: Academic Press.

    Google Scholar 

  • Eisenberg, A., and Yeager, H.L. (eds.) (1982). Perftuorinated Ionomer Membranes. ACS Symposium Series 180, Washington DC: American Chemical Society.

    Google Scholar 

  • Eisenberg, A. et al. (1984). Aromatic ionomer membranes: synthesis, structure and properties Contemp. Top. Polym. Sci. 5: 375–400.

    CAS  Google Scholar 

  • Entelis, S.G., Evreinov, V.V., and Gorshkov, A.V. (1986). Functionality and molecular weight distribution of telechelic polymers. Adv. Polym. Sci. 76: 129–75.

    Google Scholar 

  • Faust, R., Nagy, A., and Kennedy, J.P. (1987). Living carbocationic polymerization. V. Linear telechelic polyisobutylenes by bifunctional initiators. J. Macromol. Sci.-Chem. A24(6): 595–609.

    CAS  Google Scholar 

  • Feng, D. et al. (1989a). Morphological investigation of polytetramethyleneoxide-dibromoxylene segmented ionene polymers by transmission electron microscopy and small-angle X-ray scattering. J. Macromol. Sci.-Chem. A26(8): 1151–81.

    CAS  Google Scholar 

  • Feng, D. et al. (1989b). Structure-property behavior of elastomeric segmented PTMO-ionene polymers. II. J. Appl. Polym. Sci. 38(8): 1549–65.

    CAS  Google Scholar 

  • Fetters, L.J. et al. (1988). Association behavior of end-functionalized polymers. 2. Melt rheology of polyisoprenes with carboxylate, amine, and zwitterion end groups. Macromolecules 21(6): 1644–53.

    CAS  Google Scholar 

  • Fields, J.E., and Nielsen, L.E. (1968). Dynamical mechanical properties of some polymeric acid zinc salts. J. Appl Polym. Sci. 12: 1041–51.

    CAS  Google Scholar 

  • Fitzgerald, J.J., and Weiss, R.A. (1988). Synthesis, properties, and structure of sulphonate ionomers. J. Macromol. Sci. Revs. Macromol. Chem. Phys. C28(l): 99–185 (see also other articles in the same issue).

    CAS  Google Scholar 

  • Flory, P.J. (1953). Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Freidlina, R.K., and Chukovskaya, E.C. (1974). Synthesis of polychloro derivatives with various functional groups containing chlorine. Synthesis 6(7): 477–88.

    Google Scholar 

  • Gagnebien, D., Madec, P.J., and Maréchal, E. (1985). Synthesis of poly(sulphone-b-siloxane) S-I. Model study of the epoxyphenol reaction in the melt. Europ. Polym. J. 21(3): 273–87.

    CAS  Google Scholar 

  • Geckeler, K.E. (1989). Terminal transformation of telechelics. In Telechelic Polymers: Synthesis and Applications, ed. E.J. Goethals, Chap. 10. Boca Raton: CRC Press.

    Google Scholar 

  • Goethals, E.G., and De Clercq, R.R. (1992). Cationic ring-opening polymerization. In New Methods for Polymer Synthesis, ed. W.J. Mijs, pp. 67–107. New York and London: Plenum Press.

    Google Scholar 

  • Granville, M. et al. (1988). Probing of the ion pair association in model ionomers by excimer fluorescence. Macromolecules 21(9): 2894–6.

    CAS  Google Scholar 

  • Guizard, C., and Cheradame, H. (1981). α, ω-Bifunctional oligomers from copolymers of conjugated dienes with isobutene. Eur. Polym. J. 17(2): 121–4.

    CAS  Google Scholar 

  • Hamaide, T. et al. (1991). Synthesis, glass transition and solution behaviour of carboxylatobetaine telechelic polymers. Polymer 32(6): 1089–94.

    CAS  Google Scholar 

  • Han, K., and Williams, H.L. (1991). Ionomers: two formation mechanisms and models. J. Appl. Polym. Sci. 42(7): 1845–59.

    CAS  Google Scholar 

  • Hara, M. et al. (1988). Polyelectrolyte behavior of halato-telechelic ionomers in polar solvent. Macromolecules 21(11): 3330–1.

    CAS  Google Scholar 

  • Hautekeer, J.P. et al. (1990). Anionic polymerization of acrylic monomers. 5. Synthesis, characterization and modification of polystyrene-poly(tert-butylacrylate) di- and triblock copolymers. Macromolecules 23(17): 3893–8.

    CAS  Google Scholar 

  • Hegedus, R.D., and Lenz, R.W. (1988). Telechelic sulfate ionomers. I. Preparation and solution and thermal properties. J. Polym. Sci. Polym. Chem. Ed. 26(2): 367–80.

    CAS  Google Scholar 

  • Holliday, L. (1975). Classification and general properties of ionic polymers. In Ionic Polymers, ed. L. Holliday, pp. 1–68. London: Applied Science Publishers.

    Google Scholar 

  • Honoré, P., Deleens, G., and Marechal, E. (1980). Synthesis and study of various reactive oligomers and of poly(ester-imide-ether)s. Europ. Polym. J. 16(9): 909–16.

    Google Scholar 

  • Hoover, M.F. (1970). Cationic quaternary polyelectrolytes—A literature review. J. Macromol. Sci. Chem. A4(6): 1327–1417.

    Google Scholar 

  • Hoover, M.F., and Butler, G.B. (1974). Recent advances in ion-containing polymers. J. Polym. Sci. Polym. Symp. 45: 1–38.

    CAS  Google Scholar 

  • Horrion, J., Jérôme, R., and Teyssié, Ph. (1986). Halato-telechelic polymers. 12. Block copolymerization of polystyrene and polybutadiene via ionic interactions. J. Polym. Sci., Polym. Letters 24(2): 69–76.

    CAS  Google Scholar 

  • Horrion, J., Jérôme, R., and Teyssié, Ph. (1989a). Halato-telechelic polymers. XIV. Solution behavior of α,ω-divalent transition metal dicarboxylato polybutadiene. J. Polym. Sci., Polym. Phys. Ed. 27(13): 2677–93.

    CAS  Google Scholar 

  • Horrion, J. et al. (1989b). Thermally stimulated current studies in blends of immiscible telechelic polymers. Polym. Bull. 21(6): 627–33.

    CAS  Google Scholar 

  • Horrion, J., Jérôme, R., and Teyssié, Ph. (1990). Halato-telechelic polymers. XV. Ionic cross-interactions of immiscible telechelic polymers. A reversible pathway to block-copolymer-type materials. J. Polym. Sci., Polym. Chem. Ed. 28(1): 153–71.

    CAS  Google Scholar 

  • Ivan, B., and Kennedy, J.P. (1988). Living carbocationic polymerization. XX. Synthesis of novel allyltelechelic polyisobutylenes by direct functionalization. Polym. Mater. Sci. Eng. 58: 866–72.

    Google Scholar 

  • Ivan, B., and Kennedy, J.P. (1990). Living carbocationic polymerization. XXX. One-pot synthesis of allyl-terminated linear and tri-arm star polyisobutylenes, and epoxy-telechelic and hydroxy-telechelic therefrom. J. Polym. Sci., Polym. Chem. Ed. 28(1): 89–104.

    CAS  Google Scholar 

  • Ivan, B., Kennedy, J.P., and Chang, V.S.C. (1980). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). VII. Synthesis and characterization of α,ω-di(hydroxy)polyisobutylene. J. Polym. Sci., Polym. Chem. Ed. 18(11): 3177–91.

    Google Scholar 

  • Jacovic, M.S., Favier, J.C., and Janah, H. (1989). Ionomer-like materials based on 4-vinylpyridine copolymers. Makromol. Chem., Rapid Commun. 10(5): 217–25.

    CAS  Google Scholar 

  • Jalal, N., and Duplessix, R. (1988). Aggregation of monocarboxylic polymer chains by neutralization, neutron and X-ray scattering. J. Phys. 49(10): 1775–83.

    CAS  Google Scholar 

  • Jenkins, D.K., and Duck, E.W. (1975). Carboxylated elastomers. In Ionic Polymers, ed. L. Holliday, Chap. 3. New York: Wiley.

    Google Scholar 

  • Jérôme, R. (1987). Gelation and phase separation of solutions of halato-telechelic polymers. In Structure and Properties of Ionomers, ed. M. Pineri and A. Eisenberg, pp. 399–414. Dordrecht: Reidel.

    Google Scholar 

  • Jérôme, R. (1989). Halato-telechelic polymers: A new class of ionomers. In Telechelic Polymers: Synthesis and Applications, ed. E.J. Goethals, Chap. 11. Boca Raton: CRC Press.

    Google Scholar 

  • Jérôme, R., Broze, G., and Teyssié, Ph. (1985). Association of the ion pair end-groups of halatotelechelic polymers in nonpolar solvents. In Microdomains in Polymer Solutions, ed. P. Dubin, 243–64. New York: Plenum.

    Google Scholar 

  • Jérôme, R. et al. (1991). Telechelic polymers: synthesis, characterization and applications. Prog. Polym. Sci. 16: 837–906.

    Google Scholar 

  • Kabanov, V.A., and Zezin, A.B. (1984). A new class of complex water-soluble polyelectrolytes. Makromol. Chem., Suppl. 6: 259–76.

    CAS  Google Scholar 

  • Kangas, D. A. (1973). Sulphonic acids and sulphonate monomers. In Functional Monomers: their Preparation, Polymerization, and Application, ed. R.H. Yocum and E.B. Nyquist, vol. 1, pp. 489–640. New York: Dekker.

    Google Scholar 

  • Kathmann, E.E., Salazar, L.S., and McCormick, C.L. (1991). Copolymers of sodium 2-acrylamido-2-methylpropane sulphonate with (2-acrylamido-2-methylpropyl)trimethylammonium chloride. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32(1): 98–9.

    CAS  Google Scholar 

  • Kennedy, J.P., and Hiza, M. (1983). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). XXX. Synthesis and quantitative terminal functionalization of α,ω-diakyl polyisobutylenes. J. Polym. Sci., Polym. Chem. Ed. 21(12): 3573–90.

    CAS  Google Scholar 

  • Kennedy, J.P., and Ivan, B. (1991). Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice. Munich: Hanser.

    Google Scholar 

  • Kennedy, J.P. et al. (1981). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). 10. Three-arm star telechelic polyisobutylenes carrying chlorine, olefin or primary alcohol endgroups. Polym. Bull. 4(1–2): 67–74.

    CAS  Google Scholar 

  • Kobayashi, S., Huang, M.Y., and Saegusa, T. (1982). Spontaneous copolymerization of 2-phenyl-l,3,6,2-trioxaphosphocane with α,ω-unsaturated acids and α-keto acids. Polym. Bull. 6(7): 389–93.

    CAS  Google Scholar 

  • Kobayashi, S., Uyama, H., and Narita, Y. (1990). Synthesis of poly(2-oxazoline) ionene polymer. Polym. J. 22(2): 175–8.

    CAS  Google Scholar 

  • Kohjiya, S. et al. (1990). Synthesis of dimethylamino terminated poly(tetrahydrofuran) and adhesion property of poly(tetrahydrofuran)ionene prepared therefrom. Bull Chem. Soc. Japan 63(7): 2089–93.

    CAS  Google Scholar 

  • Konter, W. et al. (1981). Telechelic, 6. Oligostyrenes by radical polymerization. Makromol. Chem. 182(10): 2619–32.

    CAS  Google Scholar 

  • Kurachi, Y., and Kajiwara, M. (1991). Synthesis and properties of poly(organophosphazenes) ionomers [NP(HNC6H5)2_(x+y)(HNC6H4S03H)x(HNC6H4S03Li)y]n. J.Mater. Sci. 26(7): 1799–802.

    CAS  Google Scholar 

  • Lam, P.K.H., George, M.H., and Barrie, J.A. (1989). Sulphonated polyurethane ionomers with new ionic dials. Polymer 30(12): 2320–3.

    CAS  Google Scholar 

  • Lam, P.K.H., George, M.H., and Barrie, J.A. (1991). New polyurethane ionomers containing phosphate groups. Polymer Commun. 32(3): 80–2.

    CAS  Google Scholar 

  • Landoll, L.M., and Breslow, D.S. (1989). Polypropylene ionomers. J. Polym. Sci., Polym. Chem. Ed. 27(7): 2189–201.

    CAS  Google Scholar 

  • Lapienis, G. (1992). Synthesis of poly (alky lene phosphate)s bearing uracil moiety in the main chain. J. Polym. Sci., Polym. Chem. Ed. 30(1): 71–6.

    CAS  Google Scholar 

  • Leir, C.M., and Stark, J.E. (1989). Ionene elastomers from polytetramethylene oxide diamines and reactive dihalides. I. Effect of dihalide structure on polymerization and thermal reversibility. J. Appl. Polym. Sci. 38(8): 1535–47.

    CAS  Google Scholar 

  • Leonard, E.C. et al. (1961). A new synthetic elastomer based on a chlorophosphonated polyolefin. II. Effect of polyolefin structure on vulcanizate properties. J. Polym. Sci. 55(6): 799–810.

    CAS  Google Scholar 

  • Liao, T.P., and Kennedy, J.P. (1981). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). 15. Synthesis and characterization of telechelic acid ester polyisobutylenes. Polym. Bull. 5(1): 11–18.

    CAS  Google Scholar 

  • Lindsell, W.E. et al. (1990). The preparation and quaternization of phosphorus-terminated poly-1,3-butadiene: new telechelic ionomers. Polymer 31(7): 1374–8.

    CAS  Google Scholar 

  • Long, T.E., Allen, R.D., and McGrath, J.E. (1986). Synthesis and characterization of block copolymers containing acid and ionomeric functionalities. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 27(2): 54–6.

    CAS  Google Scholar 

  • Long, T.E., Allen, R.D., and McGrath, J.E. (1988). Synthesis and characterization of block copolymers containing acid and ionomeric functionalities. ACS Symp. Ser. 364: 258–75.

    CAS  Google Scholar 

  • Longworth, R. (1975). Thermoplastic ionic polymers: ionomers. In Ionic Polymers, ed. L. Holliday, Chap. 2, New York: Wiley.

    Google Scholar 

  • Longworth, R. (1983). The structure and properties of ionomers. In Developments in Ionic Polymers — 7, ed. A.D. Wilson and H.J. Prosser, pp. 53–172. London and New York: Applied Science Publishers.

    Google Scholar 

  • Luskin, L.S. (1974). Basic Monomers: Vinyl pyridines and aminoalkyl acrylates and methacrylates. In Functional Monomers, vol. 1., ed. R.H. Yocum and E.B. Nyquist, pp. 555–740. New York: Dekker.

    Google Scholar 

  • Ma, B., and Xie, H. (1990). Preparation of sulphonated EPDM ionomer with phase transfer catalyst. Hecheng Xiangjiao Gongye 13(3): 183–6; Chem. Abstr. 114: 145173r.

    CAS  Google Scholar 

  • Ma, B., and Xie, H. (1990). Preparation of sulphonated EPDM ionomer with phase transfer catalyst. Hecheng Xiangjiao Gongye 13(3): 183–6; Chem. Abstr. 114: 145173r.

    Google Scholar 

  • MacKnight, W.J., and Earnest, T.R. (1981). Structure and properties of ionomers. Macromol. Rev. 16: 41–122.

    CAS  Google Scholar 

  • MacKnight, W.J., and Lundberg, R.D. (1984). Elastomeric ionomers. Rubber Chem. Technol. 57(3): 652–3.

    CAS  Google Scholar 

  • Madec, P.J., and Maréchal, E. (1978). Synthesis and study of block copolycondensates containing polysiloxane and unsaturated polyester blocks in the chain. I. Polyunsaturated esters-b-siloxanes) with blocks linked by Si-O-C bonds. J. Polym. Sci., Polym. Chem. Ed. 16(12): 3157–63.

    CAS  Google Scholar 

  • Makowski, H.S. et al. (1978). Synthesis and properties of sulphonated EPDM. Polym. Prepr. (Am: Chem. Soc., Div. Polym. Chem.) 19(2): 292–7.

    CAS  Google Scholar 

  • Makowski, H.S. et al. (1980). Synthesis and properties of sulphonated EPDM. In Ions in Polymers, Adv. Chem. Ser. 187, ed. A. Eisenberg, pp. 3–19. Washington DC: American Chemical Society.

    Google Scholar 

  • Mansson, P. (1980). Reactions of polystyrylanions with carbon dioxide and oxygen. Analysis of products by silica gel chromatography. J. Polym. Sci., Polym. Chem. Ed. 18(6): 1945–56.

    Google Scholar 

  • McCormick, C.L., and Salazar, L.S. (1992). Water-soluble copolymers. XLI. Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. J. Macromol. Sci.—Pure Appl. Chem. A29(3): 193–205.

    CAS  Google Scholar 

  • McGrath, J.E. (1983). Synthesis of block, graft, segmented and ion-containing copolymers. Pure Appl. Chem. 55(10): 1573–81.

    CAS  Google Scholar 

  • Mishra, M.K., and Kennedy, J.P. (1987). Living carbocationic polymerization. VIII. Telechelic polyisobutylenes by the MeO(CH3)2C-p-C6H4-C (CH3)2OMe/BCl3 initiating system. Polym. Bull. 17(1): 7–13.

    CAS  Google Scholar 

  • Mishra, M.K., Mishra, B.S., and Kennedy, J.P. (1985). New telechelic polymers and sequential copolymers by poly functional initiator-transfer agents (inifers). 47. Dehydrochlorination studies of 1Cl-PiB-Cl1: quantitative dehydrochlorination to α, ω-di(isopropenyl)-PiB by NaOEt. Polym. Bull. 13(5): 435–9.

    CAS  Google Scholar 

  • Mishra, M.K., Wang, B., and Kennedy, J.P. (1987). Living carbocationic polymerization. IX. Three-arm star telechelic polyisobutylenes by C6H3(C(CH3)2OCH3)3/BCl3 complexes. Polym. Bull. 17(4): 307–14.

    CAS  Google Scholar 

  • Miyamoto, M., Sawamoto, M., and Higashimura, T. (1985). Synthesis of telechelic living polyvinyl ethers). Macromolecules 18(2): 123–7.

    CAS  Google Scholar 

  • Mohajer, Y. et al. (1982). New polyisobutylene based model ionomers. 3. Further mechanical and structural studies. Polym. Bull. 8(2/4): 47–54.

    CAS  Google Scholar 

  • Nakaya, T., Yasuzawa, M., and Imoto, M. (1989). Poly(phosphatidylcholine) analogs. Macromolecules 22(7): 3180–1.

    CAS  Google Scholar 

  • Nemes, S. et al. (1990). Oxyethylation and carbonation of telechelic polyisobutylene anions. Polym. Bull. 24(2): 187–94.

    CAS  Google Scholar 

  • Nguyen, H.A., and Maréchal, E. (1988). Synthesis of reactive oligomers and their use in block polycondensation. J. Macromol. Sci., Rev. Macromol. Chem. Phys. C28(2): 187–291.

    CAS  Google Scholar 

  • Nuyken, O., Chang, V.S.C., and Kennedy, J.P. (1981). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). 9. Demonstration of chain extension of α,ω-polyisobutylenediolefins with dithiols. Polym. Bull. 4(1/2): 61–5.

    CAS  Google Scholar 

  • O’Gara, J.F. et al. (1987). Random homogeneous sodium sulphonate polysulfone ionomers: preparation, characterization, and blend studies. J. Polym. Sci., Polym. Phys. Ed. 25(7): 1519–36.

    Google Scholar 

  • Otocka, E.P. (1971). Physical properties of ionic polymers. J. Macromol. Sci. Revs. Macromol. Chem. C5(2): 275–94.

    Google Scholar 

  • Ottenbrite, R.M., and Ryan, W.S. (1980). Cyclopolymerization of N,N-dialkyldiallyl ammonium halides. A review and use analysis. Ind. Eng. Chem., Prod. Res. Dev. 19(4): 528–32.

    CAS  Google Scholar 

  • Pannell, J. (1971). Polystyrene of known structure. Part 1. The reaction of polystyryl potassium with 14C02 and the viscosity-molecular weight correlations for linear polymers. Polymer 12(9): 547–57.

    CAS  Google Scholar 

  • Penczek, S. et al. (1991). Bioanalogous polymers with poly(alkylene phosphate) chains. Makromol. Chem., Macromol. Symp. 48/49: 1–13.

    Google Scholar 

  • Percec, V., and Auman, B.C. (1984a). Functional polymers and sequential copolymers by phase transfer catalysis. 11. Synthesis of α,ω-di(chloroallyl)- and α,ω-di(bromobenzyl) aromatic polyether sulfones. Polym. Bull. 12(6): 253–60.

    CAS  Google Scholar 

  • Percec, V., and Auman, B.C. (1984b). Functional polymers and sequential copolymers by phase transfer catalysis. 1. Alternating block copolymers of unsaturated polyethers and aromatic poly(ether sulfone)s. Makromol. Chem. 185(4): 617–27.

    CAS  Google Scholar 

  • Percec, V., Guhaniyogi, S.C., and Kennedy, J.P. (1983). New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). 25. Synthesis of α,ω-di(amino)polyisobutylenes. Polym. Bull. 9(1–3): 27–32.

    CAS  Google Scholar 

  • Percec, V. et al. (1989). Macromonomers, oligomers and telechelic polymers. In Comprehensive Polymer Science, Vol. 6. Polymer Reactions, ed. G. Allen, and J.C. Bevington, pp. 317–20. Oxford: Pergamon Press.

    Google Scholar 

  • Phillips, P.J., and MacKnight, W.J. (1970). Mechanical and thermal properties of phosphorylated polyethylene. J. Polym. Sci., Polym. Letters 8(2): 87–94.

    CAS  Google Scholar 

  • Pierson, R.M., Costanza, A.J., and Weinstein, A.H. (1955). Bis-type modifiers in polymerization. I. Behavior of various disulfides in bulk styrene polymerization. J. Polym. Sci. 17(84): 221–46.

    CAS  Google Scholar 

  • Planche, J.P., Revillon, A., and Guyot, A. (1988). Chemical modification of polynorbornene. I. Sulphonation in dilute solution. J. Polym. Sci., Polym. Chem. Ed. 26(2): 429–4.

    CAS  Google Scholar 

  • Planche, J.P., Revillon, A., and Guyot, A. (1990). Chemical modification of polynorbornene. II. Extended sulphonation processes. J. Polym. Sci., Polym. Chem. Ed. 28(6): 1377–86.

    CAS  Google Scholar 

  • Ponrathnam, S., Milas, M., and Blumstein, A. (1982). Matrix polymerization on polyelectrolyte backbones: influence of monovalent salts on the condensed monomelic counterions. Maeromolecules 15(5): 1251–5.

    CAS  Google Scholar 

  • Pourdjavadi, A., Madec, P.J., and Maréchal, E. (1984). Synthesis and characterization of poly(butadiene-b-sulphone) by block-copolycondensation-I. Synthesis from α,ω-dichlorocarbonyl oligobutadienes and α,ω-diphenol oligoaryl ether sulfones. Eur. Polym. J. 20(4): 305–10.

    CAS  Google Scholar 

  • Prosser, H.J., and Wilson, A.D. (1983). Polyelectrolyte cements. In Developments in Ionic Polymers—1, ed. A.D. Wilson and H.J. Prosser, pp. 217–67. London and New York: Applied Science Publishers.

    Google Scholar 

  • Purgett, M.D., and Vogl, O. (1987). Functional polymers. I. Terpolymers of 10-undecenoate derivatives with ethylene and propylene. J. Macromol. Sci. Chem. A24(12): 1465–81.

    CAS  Google Scholar 

  • Quirk, R.P., and Kim, J. (1991). Anionic synthesis of model ionomers. ω-Lithium poly(styrene) sulphonates. Macromolecules 24(16): 4515–22.

    CAS  Google Scholar 

  • Quirk, R.P. et al. (1990). Anionic synthesis of chain-end functionalized polymer. Makromol. Chem., Macromol. Symp. 32: 47–59.

    CAS  Google Scholar 

  • Rahrig, D., MacKnight, W.J., and Lenz, R.W. (1979). Sulphonation of a polypentenamer and preparation of its hydrogenated derivatives. Macromolecules 12(12): 195–203.

    CAS  Google Scholar 

  • Register, R.A. et al. (1988). Structure-property relationships in elastomeric carboxy-telechelic polyisoprene ionomers neutralized with divalent cations. Macromolecules 21(4): 1009–15.

    CAS  Google Scholar 

  • Register, R.A. et al. (1990). Effect of ionic aggregation on ionomer chain dimensions. 1. Telechelic polystyrenes. Macromolecules 23(11): 2978–83.

    CAS  Google Scholar 

  • Reid, D.S. (1983). Ionic Polysaccharides. In Developments in Ionic Polymers — 1, ed. A.D. Wilson and H.J. Prosser, pp. 269–92. London and New York: Applied Science Publishers.

    Google Scholar 

  • Rembaum, A., Baumgartner, W., and Eisenberg, A. (1968). Aliphatic ionenes. J. Polym. Sci., Polym. Letters 6(3): 159–71.

    CAS  Google Scholar 

  • Richards, D.H., Eastmond, G.C., and Stewart, M.J. (1989). Anionically prepared telechelic polymers. In Telechelic Polymers: Synthesis and Application, ed. E.J. Goethals, Chap. 3. Boca Raton: CRC Press.

    Google Scholar 

  • Roberts, C., Lindsell, W.E., and Soutar, I. (1990). Synthesis and viscoelastic properties of α,ω-diquaternary ammonium polybutadiene ionomers. Br. Polym. J. 23(1/2): 55–62.

    CAS  Google Scholar 

  • Russell, T.P. et al. (1988). The microstructure of block copolymers formed via ionic interactions. Macromolecules 21(6): 1709–17.

    CAS  Google Scholar 

  • Saegusa, T., and Chujo, Y. (1991). Macromolecular engineering on the basis of the polymerization of 2-oxazolines. Makromol. Chem., Macromol. Symp. 51: 1–10.

    CAS  Google Scholar 

  • Salamone, J.C., and Rice, W.C. (1988). Polyampholytes. In Encyclopedia of Polymer Science and Engineering, vol. 11, pp. 514–30. New York: Wiley-Interscience.

    Google Scholar 

  • Sandler, S.R., and Karo, W. (1974). Polymer syntheses, vol. 1, pp. 366. New York: Academic Press.

    Google Scholar 

  • Sanui, K., MacKnight, W.J., and Lenz, R.W. (1973). The hydrogenation of polypentenamer and thermal properties of the resulting products. J. Polym. Sci., Polym. Lett. 11(7): 427–34.

    CAS  Google Scholar 

  • Satas, D. (1989). Acrylic adhesives. In Handbook of Pressure Sensitive Adhesive Technology, ed. D. Satas, Chap. 15. New Yorks: Van Nostrand Reinhold.

    Google Scholar 

  • Sawamoto, M., Enoki, T., and Higashimura, T. (1987). End-functionalized polymers by living cationic polymerization. 1. Mono- and Afunctional polyvinyl ether) with terminal malonate or carboxyl groups. Macromolecules 20(1): 1–5.

    CAS  Google Scholar 

  • Seko, M., Ogawa, S., and Kimoto, K. (1982). Perfluorocarboxylic acid membrane and membrane chlor-alkali process developed by Asahi Chemical Industry. In Perfluorinated Ionomer Membranes, ed. A. Eisenberg and H.L. Yeager, pp. 365–425. Washington DC: American Chemical Society.

    Google Scholar 

  • Shen, W.P. et al. (1989). New initiators for group transfer polymerization. Triphenylphosphonium-containing ketene silyl acetals. Makromol. Chem. 190(12): 3061–6.

    CAS  Google Scholar 

  • Siadat, B., Lundberg, R.D., and Lenz, R.W. (1980). Preparation of an ionomer elastomer by continuous sulphonation in an extruder and neutralization in static mixers. Polym. Eng. Sci. 20(8): 530–4.

    CAS  Google Scholar 

  • Siadat, B., Oster, B., and Lenz, R.W. (1981). Preparation of ion-containing elastomers by emulsion copolymerization of dienes with olefinic sulphonic acid salts. J. Appl. Polym. Sci. 26(3): 1027–37.

    CAS  Google Scholar 

  • Smid, J., and Fish, D. (1988). Polyelectrolyte complexes. In Encyclopedia of Polymer Science and Technology, vol.11, pp. 720–39. New York: Wiley-Interscience.

    Google Scholar 

  • Smith, S., and Hubin, A.J. (1973). The preparation and chemistry of dicationically active polymers of tetrahydrofuran. J. Macromol. Sci.-Chem. A7(7): 1399–1413.

    Google Scholar 

  • Speckhard, T.A. et al. (1984). Properties of segmented polyurethane zwitterionomer elastomers. J. Macromol. Sci. Phys. B23(2): 175–99.

    CAS  Google Scholar 

  • Storey, R.F., and Lee, Y. (1991a). Sulphonation of t-alkyl chlorides: Application to the t-chloride-terminated polyisobutylene system. J. Polym. Sci., Polym. Chem. Ed. 29(3): 317–25.

    CAS  Google Scholar 

  • Storey, R.F., and Lee, Y. (1991b). Synthesis and characterization of triphenylsilyl-telechelic polyisobutylene: precursor to multi-ion telechelic ionomers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32(1): 184–5.

    CAS  Google Scholar 

  • Storey, R.F., and Nelson, M.E. (1991). Synthesis of high molecular weight star-branched block copolymer ionomers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem) 31(1): 186–7.

    Google Scholar 

  • Storey, R.F., George, S.E., and Nelson, M.E. (1991). Star-branched block copolymer ionomers: synthesis, characterization, and properties. Macromolecules 24(10): 2920–30.

    CAS  Google Scholar 

  • Storey, R.F., Chisholm, B.J., and Lee, Y. (1992). Synthesis and characterization of poly(styrene-b-isobutylene-b-styrene) block copolymer ionomers. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 33(2): 184–5.

    CAS  Google Scholar 

  • Suchocka-Galas, K., Gronowski, A., and Wojtczak, Z. (1980). Copolymers of styrene and acrylic acid salts. I. Copolymerization of styrene and strontium acrylate. Polimery (Warsaw) 25(12): 444–6.

    CAS  Google Scholar 

  • Teyssié, Ph. et al. (1988). New prospects in living anionic polymerization of methacrylic and acrylic esters. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 29(2): 52–3.

    Google Scholar 

  • Thomson, R.A.M. (1986). Preparation of ionic polymers. In Developments in Ionic Polymers — 2, ed. A.D. Wilson, and H.J. Prosser, pp. 1–76. London and New York: Applied Science Publishers.

    Google Scholar 

  • Tomalia, D.A. (1974). Reactive heterocyclic monomers. In Functional Monomers, vol.1, ed. R.H. Yocum and E.B. Nyquist, pp. 1–356. New York: Marcel Dekker.

    Google Scholar 

  • Tsuchida, E., and Abe, K. (1986). Polyelectrolyte complexes. In Developments in Ionic Polymers — 2, ed. A.D. Wilson, and H. J. Prosser, pp. 191–266. London and New York: Applied Science Publishers.

    Google Scholar 

  • Turner, S.R., Weiss, R.A., and Lundberg, R.D. (1985). The emulsion copolymerization of styrene and sodium styrene sulphonate. J. Polym. Sci., Polym. Chem. Ed. 23(2): 535–48.

    CAS  Google Scholar 

  • Ukinashi, H., and Yamabe, M. (1982). Perfluorocarboxylate polymer membranes. In Perfluorinated Ionomer Membranes, ed. A. Eisenberg and H.L. Yeager, pp. 427–73. Washington DC: American Chemical Society.

    Google Scholar 

  • Umeda, T., Nakaya, T., and Imoto, M. (1985). Polymeric phospholipid analogs. 16. Synthesis and properties of polymers containing phosphatidylcholine analogs in the polymer backbones. Makromol. Chem., Rapid Commun. 6(4): 285–90.

    CAS  Google Scholar 

  • Varshney, S.K. et al. (1991). Anionic polymerization of acrylic monomers. 6. Synthesis, characterization, and modification of poly(methyl methacrylate)-poly(i-butylacrylate)di- and triblock copolymers. Macromolecules 24(18): 4997–5000.

    CAS  Google Scholar 

  • Venkateshwaran, L.N. et al. (1992). Structure-property comparison of sulphonated and carboxylated telechelic ionomers based on polyisoprene. Macromolecules 25(15): 3996–4001.

    CAS  Google Scholar 

  • Visser, S.A., and Cooper, S.L. (1991). Comparison of the physical properties of carboxylated and sulfonated model polyurethane ionomers. Macromolecules 24(9): 2576–83.

    CAS  Google Scholar 

  • Wang, J. et al. (1992). Synthesis of AB (BA), ABA and BAB block copolymers of t-butylmethacrylate (A) and ethylene oxide (B). J. Polym. Sci., Polym. Chem. Ed. 30(10): 2251–61.

    CAS  Google Scholar 

  • Watterson, A.C., Liang, C.H., and Salamone, J.C. (1990). Synthesis and solution properties of poly(acrylamide/MPTMA.AMPS) obtained by different preparation methods. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 31(1): 497–8.

    CAS  Google Scholar 

  • Webster, O.W. et al. (1984). Synthesis of reactive-ended acrylic polymers by group transfer polymerization: initiation with silyl ketene acetals. J. Macromol. Sci-Chem. A21(8/9): 943–60.

    CAS  Google Scholar 

  • Webster, O.W., and Sogah, D.Y. (1987). Recent advances in the controlled synthesis of acrylic polymers by group transfer polymerization. In Recent Advances in Mechanistic and Synthetic Aspects of Polymerization, ed. M. Fontanille, and A. Guyot, pp. 3–21. Dordrecht: Reidel.

    Google Scholar 

  • Webster, O.W., and Anderson, B.C. (1992). Group transfer polymerization. In New Methods for Polymer Synthesis, ed. W.J. Mijs, pp. 1–30. New York: Plenum.

    Google Scholar 

  • Weiss, R.A. (1980). Phosphonate ionomers based on phosphonylated ethylene-propylene copolymer. J. Polym. Sci., Polym. Chem. Ed. 18(9): 2887–99.

    CAS  Google Scholar 

  • Weiss, R.A., and Lundberg, R.D. (1980). The synthesis of sulphonated polymers by free radical copolymerization. Poly(butadiene-co-sodium styrene sulphonate). J. Polym. Sci., Polym. Chem. Ed. 18(12): 3427–39.

    CAS  Google Scholar 

  • Weiss, R.A., and Agarwal, P.K. (1981). Influence of intermolecular interactions on the melt rheology of a propylene-acrylic acid copolymer and its salts. J. Appl. Polym. Sci. 26(2): 449–62.

    CAS  Google Scholar 

  • Weiss, R.A., Lundberg, R.D., and Turner, S.R. (1985a). Comparison of styrene ionomers prepared by sulfonating polystyrene and copolymerizing styrene with styrene sulphonate. J. Polym. Sci., Polym. Chem. Ed. 23(2): 549–68.

    CAS  Google Scholar 

  • Weiss, R.A., Turner, S.R., and Lundberg, R.D. (1985b). Sulphonated polystyrene ionomers prepared by emulsion copolymerization of styrene and sodium styrene sulphonate. J. Polym. Sci., Polym. Chem. Ed. 23(2): 525–33.

    CAS  Google Scholar 

  • Weiss, R.A. et al. (1986). Structure and application of ion-containing polymers. In Coulombic Interactions in Macromolecular Systems, ed. A. Eisenberg and F.E. Bailey, ACS Symposium Series, 302, pp. 2–19. Washington DC: American Chemical Society.

    Google Scholar 

  • Weiss, R.A. et al. (1990). Block copolymer ionomers: thermoplastic elastomers possessing two distinct physical networks. Polym. Commun. 31(6): 220–3.

    CAS  Google Scholar 

  • Weiss, R.A. et al. (1991a). Block copolymer ionomers: 2. Viscoelastic and mechanical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer 32(15): 2785–92.

    CAS  Google Scholar 

  • Weiss, R.A., Sasongko, S., and Jérôme, R. (1991b). Graft copolymers of polystyrene and polyisoprene prepared by complexation of functional homopolymers. Macromolecules 24(9): 2271–7.

    CAS  Google Scholar 

  • Wilson, A.D., and Prosser, H.J. (1983). Ionic polymers: history, definition and classification. In Developments in Ionic Polymers — 1, ed. A.D. Wilson and H.J. Prosser, pp. 1–34. London and New York: Applied Science Publishers.

    Google Scholar 

  • Worsfold, D.J. (1983). Preparation of polystyrene labeled with amine groups at specific sites. J. Polym. Sci., Polym. Chem. Ed. 21(8): 2237–40.

    CAS  Google Scholar 

  • Yamashita, S. et al. (1988). Synthesis and properties of elastomeric ionenes. I. Polybutadiene ionenes. J. Appl. Polym. Sci. 35(7): 1927–35.

    CAS  Google Scholar 

  • Yang, C.Z. et al. (1991). Carboxylate-containing chain-extended polyurethanes. J. Polym. Sci., Polym. Phys. 29(5): 581–8.

    CAS  Google Scholar 

  • Yang, S., Sun, K., and Risen, W.M. (1990). Preparation and thermal characterization of the glass transition temperatures of sulphonated polystyrene-metal ionomers. J. Polym. Sci., Polym. Phys. 28(10): 1685–97.

    CAS  Google Scholar 

  • Yano, S., Tadano, K., and Jérôme, R. (1991). Dielectric properties of a model cationic ionomer. Macromolecules 24(24): 6439–2.

    CAS  Google Scholar 

  • Yeoh, K.W. et al. (1990). Copolymerization of sodium 11-acrylamidoudecanoate with acrylamide and the solution properties of the copolymers. J. Macromol. Sci.-Chem. A27(6): 711–24.

    CAS  Google Scholar 

  • Yilgor, I., and McGrath, J.E. (1988). Polysiloxane containing copolymers: A survey of recent developments. Adv. Polym. Sci. 86: 3–86.

    Google Scholar 

  • Yilgor, I. et al. (1983). Ion-containing polymers. I. Alkyl acrylate-sulphonated styrene copolymers by emulsion copolymerization. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 24(2): 37–8.

    CAS  Google Scholar 

  • Yocum, R.H., andNyquist, E.B. (eds.). Vol. 1 (1973) Functional Monomers. Their Preparation, Polymerization, and Application. New York: Dekker.

    Google Scholar 

  • Yocum, R.H., andNyquist, E.B. (eds.). Vol. 2. (1974). Functional Monomers. Their Preparation, Polymerization, and Application. New York: Dekker.

    Google Scholar 

  • Yu, X. et al. (1985). Polydimethylsiloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J. Polym. Sci., Polym. Phys. Ed. 23(11): 2319–38.

    CAS  Google Scholar 

  • Yu, X. et al. (1986). Poly(chloropropylmethyl-dimethylsiloxane)-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J. Polym. Sci., Polym. Phys. Ed. 24(12): 2681–702.

    CAS  Google Scholar 

  • Zhang, B., and Weiss, R. (1992). Liquid crystalline ionomers. II. Main chain liquid crystalline polymers with terminal sulphonate groups. J. Polym. Sci., Polym. Chem. Ed. 30(6): 989–96.

    CAS  Google Scholar 

  • Ziegast, G., and Pfannemiiller, B. (1981). 13C-NMR analysis of amino and hydroxyl endgroups in telechelic poly(oxyethylene)s. Polym. Bull. 4(8): 467–71.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Jérôme, R., Mazurek, M. (1997). Synthesis and characterization of molecular structure. In: Tant, M.R., Mauritz, K.A., Wilkes, G.L. (eds) Ionomers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1461-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1461-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7153-6

  • Online ISBN: 978-94-009-1461-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics