Skip to main content

Olive Stones Pyrolysis: Chemical, Textural and Kinetics Characterization

Olive stones pyrolysis characterization

  • Chapter
Developments in Thermochemical Biomass Conversion

Abstract

A study of olive stones pyrolysis over a wide range of temperatures, from ambient temperature up to 1123 K, has been carried out. Variations of chemical compositions and textural features taking place during olive stones pyrolysis have been determined. Porosity development with increasing pyrolysis temperature has been established from adsorption measurements employing nitrogen at 77 K and carbon dioxide at 298 K. Virgin olive stones and pyrolyzed samples structure modifications have been visualized by optical and scanning electron microscopy, respectively. Isothermal and non-isothermal thermogravimetric analysis has been carried out to examine pyrolysis kinetics. A recent model presented in the literature has been successfully applied to describe experimental data. Kinetic parameters have been estimated and compared with others reported for lignin. Both activation energy and preexponential factor have been found to increase with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. González, M.T., Molina-Sabio, M. and Rodríguez-Reinoso, F. (1994) Steam activation of olive stone chars, development of porosity. Carbon, Vol. 32, No. 8, pp. 1407–1413.

    Article  Google Scholar 

  2. Balci, S, Dogu, T. and Yücel, H. (1993) Pyrolysis kinetics of lignocellulosic materials. Industrial & Engineering Chemistry Research, Vol. 32, pp. 2573–2579.

    Article  CAS  Google Scholar 

  3. Koufopanos, C.A., Papayannakos, N., Maschio, G. and Luchesi, A. (1991) Modeling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. The Canadian Journal of Chemical Engineering, Vol. 69, pp. 907–915.

    Article  CAS  Google Scholar 

  4. Bridgwater, A. V. and Grassi, G. (1991) Biomass Pyrolysis Liquids Upgrading and Utilisation. Elsevier Applied Science, London and New York.

    Book  Google Scholar 

  5. Antal, M. J. Jr. and Varhegyi, G. (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Industrial and Engineering Chemistry Research, Vol. 34, No. 3, pp. 703–717.

    Article  CAS  Google Scholar 

  6. Font, R. and Williams, P. T. (1995) Pyrolysis of biomass with constant heating rate: influence of the operating conditions. Thermochimica Acta, Vol. 250, pp. 109–123.

    Article  CAS  Google Scholar 

  7. Magnaterra, M., Fusco, J. R., Ochoa, J. and Cukierman, A. L. (1994) Kinetic study of the reaction of different hardwood sawdust chars with oxygen. Chemical and structural characterization of the samples. Advances in Thermochemical Biomass Conversion, Edited by A.V. Bridgwater, Blackie A&P, London, Vol. 1, pp. 116–121.

    Google Scholar 

  8. Zanzi, R., Sjöström, K. and Björnbom, E. (1995) Rapid Pyrolysis of Bagasse at High Temperature. Proceedings of the Third Asian-Pacific International Symposium on Combustion and Energy Utilization, Hong Kong, Vol. 3, pp. 211–215.

    Google Scholar 

  9. Milosavljevic, I. and Suuberg, E. M. (1995) Cellulose thermal decomposition kinetics: global mass loss kinetics. Industrial and Engineering Chemistry Research, Vol. 34, No. 4, pp. 1081–1091.

    Article  CAS  Google Scholar 

  10. Koufopanos, C. A., Maschio, G. and Lucchesi, A. (1989) Kinetic modeling of the pyrolysis of biomass and biomass components. The Canadian Journal of Chemical Engineering, Vol. 67, No. 1, pp. 75–83.

    Article  CAS  Google Scholar 

  11. Delia Rocca, P. Pyrolysis and gasification of lignocellulosic residues. PhD Thesis in preparation, Universidad de Buenos Aires, Argentina.

    Google Scholar 

  12. Figueiredo, J. L., Valenzuela, C., Bernalte, A. and Encinar, J. M. (1989) Pyrolysis of holm-oak wood: influence of temperature and particle size. Fuel, Vol. 68, pp. 1012–1016.

    Article  CAS  Google Scholar 

  13. Wornat, M. J., Hurt, R. H, Yang, N. Y. C and Headley, T. J. (1995) Structural and compositional transformations of biomass chars during combustion. Combustion and Flame, Vol. 100, pp. 131–143.

    Article  CAS  Google Scholar 

  14. López-González, J. de D., Martinez-Vilchez, F. and Rodríguez-Reinoso (1980) Preparation and characterization of active carbons from olive stones. Carbon, Vol. 18, No. 6, pp. 413–418.

    Article  Google Scholar 

  15. Gutierrez, M. C., Cukierman, A. L. and Lemcoff, N. O. (1988) Study of subbituminous coal chars: effect of heat treatment temperature on their structural characteristics. Journal of Chemical Technology and Biotechnology, Vol. 41, pp. 85–93.

    CAS  Google Scholar 

  16. Sousa, J. C., Torriani, I. L., Luengo, C. A., Fusco, J. R. and Cukierman, A. L. (1991) Microporosity and surfaces areas study of pine charcoal by SAXS and CO2 adsorption techniques. Journal of Applied Christalography, Vol. 24, pp. 803–808.

    Article  Google Scholar 

  17. Amarasekera, G., Scarlett, M. J. and Mainwaring, D. E. (1995) Micropore size distributions and specific interactions in coals. Fuel, Vol. 74, No. 1, pp. 115–118.

    Article  CAS  Google Scholar 

  18. Gregg, S. J. and Sing, K. S. W., (1982) Adsorption, surface area and porosity. Academic Press Inc., London.

    Google Scholar 

  19. Magnaterra, M. R. (1989) Study of the combustion of different hardwood species devolatilized samples. PhD Thesis, Universidad de Buenos Aires, Argentina.

    Google Scholar 

  20. López-Peinado, A., Rivera-Utrilla, J., López-González, J. D. and Mata-Arjona, A. (1985) Porous texture characterization of coals and chars. Adsorption Science and Technology, Vol. 2, pp. 31–38.

    Google Scholar 

  21. Gale, T. K., Fletcher, T. H. and Bartholomew, C. H. (1995) Effects of pyrolysis conditions on internal surface areas and densities of coal chars prepared at high heating rates in reactive and non-reactive atmospheres. Energy & Fuels, Vol. 9, No. 3, pp. 513–524.

    Article  CAS  Google Scholar 

  22. Caballero, J. A., Font, R., Marcilla, A. and Conesa, J. A. (1995) New kinetic model for thermal decomposition of heterogeneous materials. Industrial & Engineering Chemistry Research, Vol. 34, No. 3, pp. 806–812.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Della Rocca, P.A., Horowitz, G.I., Bonelli, P., Cassanello, M.C., Cukierman, A.L. (1997). Olive Stones Pyrolysis: Chemical, Textural and Kinetics Characterization. In: Bridgwater, A.V., Boocock, D.G.B. (eds) Developments in Thermochemical Biomass Conversion. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1559-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1559-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7196-3

  • Online ISBN: 978-94-009-1559-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics