Skip to main content

Effects of Nonlinear Gain on Soliton Transmission in Fibers

  • Conference paper
Physics and Applications of Optical Solitons in Fibres ’95

Part of the book series: Solid-State Science and Technology Library ((SSST,volume 3))

Abstract

In this paper we discuss the effect of nonlinear gain in suppressing the linear-wave growth in soliton transmission systems. We also show that bi- or multi-stable soliton transmission may be achieved when higher-order dependency of the gain on the intensity is considered. Some properties of nonlinear (amplifying) loop mirrors as the nonlinear-gain element are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mecozzi, A., Moores, J.D., Haus, H.A., and Lai, Y.: Soliton transmission control, Opt. Lett. 16(1991), 1841–1843.

    Article  CAS  Google Scholar 

  2. Kodama, Y. and Hasegawa, A.: Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect, Opt. Lett. 17 (1992), 31–33.

    Article  CAS  Google Scholar 

  3. Blow, K.J., Doran, N.J., and Wood, D. Trapping of energy into solitary waves in amplified nonlinear dispersive systems, Opt. Lett. 12 (1987), 1011–1013.

    Article  CAS  Google Scholar 

  4. Nakazawa, M., Kurokawa, K., Kubota, H., and Yamada, E.:Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape, Phys. Rev. Lett. 65 (1990), 1881–1884.

    Article  CAS  Google Scholar 

  5. Kodama, Y., Romagnoli, M., and Wabnitz, S.:Soliton stability and interactions in fibre lasers, Electron. Lett. 28 (1992), 1981–1983.

    Article  Google Scholar 

  6. Matsumoto, M. and Hasegawa, A.: Numerical study of the reduction of instability in bandwidth-limited amplified soliton transmission, Opt. Lett. 18 (1993), 897–899.

    Article  CAS  Google Scholar 

  7. Haus, H.A., Fujimoto, J.G., and Ippen, E.R: Structures for additive pulse mode locking, J. Opt. Soc. Am. B 8 (1991), 2068–2076.

    Article  CAS  Google Scholar 

  8. Chen, C-J., Wai, P.K.A., and Menyuk, C.R.: Stability of passively mode-locked fiber lasers with fast saturable absorption, Opt. Lett. 19 (1994), 198–200.

    Article  CAS  Google Scholar 

  9. Matsumoto, M., Ikeda, H., Uda, T., and Hasegawa, A.:Stable soliton transmission in the system with nonlinear gain, J. Lightwave Technol. 13 (1995), 658–665.

    Article  Google Scholar 

  10. Hasegawa, A. and Kodama, Y.: Guiding-center soliton in optical fibers, Opt. Lett. 15 (1990), 1443–1445.

    Article  CAS  Google Scholar 

  11. Mollenauer, L.F., Evangelides, Jr., S.G., and Haus, H.A.: Long-distance soliton propagation using lumped amplifiers and dispersion sifted fiber, J. Lightwave Technol. 9 (1991), 194–197.

    Article  Google Scholar 

  12. Blow, K.J. and Doran, N.J.: Average soliton dynamics and the operation of soliton systems with lumped amplifiers, IEEE Photonics Technol. Lett. 3 (1991), 369–371.

    Article  Google Scholar 

  13. Ohhira, R., Hasegawa, A., and Kodama, Y.: Methods of constructing a long-haul soliton transmission system with fibers having a distribution in dispersion, Opt. Lett. 20 (1995), 701–703.

    Article  CAS  Google Scholar 

  14. Wai, P.K.A., Menyuk, C.R., and Chen, H.H.:Stability of solitons in randomly varying birefringent fibers, Opt. Lett. 16 (1991), 1231-1233.

    Article  Google Scholar 

  15. Moores, J.D.: On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term, Opt. Commun. 96 (1993), 65–70.

    Article  Google Scholar 

  16. Malomed, B.A.: Evolution of nonsoliton and “quasi-classical” wavetrains in nonlinear Schrödinger and Korteweg de-Vries equations with dissipative perturbations, Physica 29D (1987), 155–172.

    Google Scholar 

  17. Afanasjev, V.V., Loh, W.H., Grudinin, A.B., Atkinson, D., and Payne, D.N.: Unlimited soliton propagation and noise suppression in a system with spectral filtering and saturable absorption, Tech. Dig. Conf. Lasers and Electro-Optics (1994), 366–367.

    Google Scholar 

  18. Kodama, Y. and Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide, IEEE J. Quantum Electron. QE-23 (1987), 510–524.

    Article  CAS  Google Scholar 

  19. Uzunov, I.M., Musehall, R., Gölles, M., Lederer, F., and Wabnitz, S.: Effect of nonlinear gain and filtering on soliton interaction, Opt. Commun. 118 (1995), 577–580.

    Article  CAS  Google Scholar 

  20. Afanasjev, V.V. and Akhmediev, N.: Soliton interaction and bound states in amplified-damped fiber systems, Opt. Lett. 20 (1995), 1970–1972.

    Article  CAS  Google Scholar 

  21. Matsumoto, M, Ikeda, H., and Hasegawa, A.: Suppression of noise accumulation in bandwidth-limited soliton transmission by means of nonlinear loop mirror, Opt. Lett. 19 (1994), 183–185.

    Article  CAS  Google Scholar 

  22. Fermann, M.E., Haberl, F., Hofer, M., and Hochreiter, H.: Nonlinear amplifying loop mirror, Opt. Lett. 15 (1990), 752–754.

    Article  CAS  Google Scholar 

  23. Duling, III, I.N.: Subpicosecond all-fibre erbium laser, Electron. Lett. 27 (1991), 544–545.

    Article  Google Scholar 

  24. Richardson, D.J., Laming, R.I., Payne, D.N., Phillips, M.W., and Matsas, V.J.: 320fs soliton generation with passively mode-locked erbium fibre laser, Electron. Lett. 27 (1991), 730–732.

    Article  Google Scholar 

  25. Matsumoto, M, Kodama, Y., and Hasegawa, A.: Adiabatic amplification of solitons by means of nonlinear amplifying loop mirrors, Opt. Lett. 19 (1994), 1019–1021.

    Article  CAS  Google Scholar 

  26. Rottwitt, K., Margulis, W., and Taylor, J.R.: Soliton recovery using a nonlinear amplifying loop mirror, Electron. Lett. 31 (1995), 395–397.

    Article  Google Scholar 

  27. Stolen, R.H., Botineau, J., and Ashkin, A.: Intensity discrimination of optical pulses with birefringent fibers, Opt. Lett. 7 (1982), 512–514.

    Article  CAS  Google Scholar 

  28. Winful, H.G. and Walton, D.T.: Passive mode locking through nonlinear coupling in a dual-core fiber laser, Opt. Lett. 17 (1992), 1688–1690.

    Article  CAS  Google Scholar 

  29. Chu, P.L., Peng, G.D., Malomed, B.A., Hatami-Hanza, H., and Skinner, I.M.: Time-domain soliton filter based on a semidissipative dual-core fiber, Opt. Lett. 20 (1995), 1092–1094.

    Article  CAS  Google Scholar 

  30. Atkinson, D., Loh, W.H., Afanasjev, V.V., Grudinin, A.B., Seeds, A.J., and Payne, D.N.: Increased amplifier spacing in a soliton system with quantum-well saturable absorbers and spectral filtering, Opt. Lett. 19 (1994), 1514–1516.

    Article  CAS  Google Scholar 

  31. Enns, R.H., Edmundson, D.E., Rangnekar, S.S., and Kaplan, A.E.: Optical switching between bistable soliton states: a theoretical review, Optical and Quantum Electron. 24 (1992), s1295-sl314.

    Article  Google Scholar 

  32. Herrmann, J.: Bistable bright solitons in dispersive media with a linear and quadratic intensity-dependent refractive index change, Opt. Commun. 87 (1992), 161–165.

    Article  Google Scholar 

  33. Doran, N.J. and Wood, D.: Nonlinear-optical loop mirror, Opt. Lett. 13 (1988), 56–58.

    Article  CAS  Google Scholar 

  34. Smith, N.J. and Doran, N.J.: Picosecond soliton propagation using nonlinear optical loop mirrors as intensity filters, Electron. Lett. 30 (1994), 1084–1085.

    Article  Google Scholar 

  35. Smith, N.J. and Doran, N.J.: Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters, J. Opt. Soc. Am. B 12 (1995), 1117–1125.

    Article  CAS  Google Scholar 

  36. Matsumoto, M., Ikeda, H., and Hasegawa, A.: Reduction of Gordon-Haus effect on dark solitons by means of nonlinear gain, Electron. Lett. 31 (1995), 482–483.

    Article  Google Scholar 

  37. Ikeda, H., Matsumoto, M., and Hasegawa, A.: Transmission control of dark solitons by means of nonlinear gain, Opt. Lett. 20 (1995), 1113–1115.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this paper

Cite this paper

Matsumoto, M., Hasegawa, A. (1996). Effects of Nonlinear Gain on Soliton Transmission in Fibers. In: Hasegawa, A. (eds) Physics and Applications of Optical Solitons in Fibres ’95. Solid-State Science and Technology Library, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1736-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1736-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7277-9

  • Online ISBN: 978-94-009-1736-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics