Skip to main content

The Korteweg-de Vries Equation with Small Dispersion: Higher Order Lax-Levermore Theory

  • Chapter
Applied and Industrial Mathematics

Part of the book series: Mathematics and Its Applications ((MAIA,volume 56))

  • 499 Accesses

Abstract

We utilize the inverse scattering transformation to study the rapid oscillations which arise in the solution of the initial value problem:

$$\begin{gathered} {u_t} + 6u{u_x} + { \in ^2}{u_{xxx}} = 0, \hfill \\ u\left( {x,0} \right) = v\left( x \right), \hfill \\ \end{gathered} $$

when ∈ → 0. We refine the Lax-Levermore theory, which gives the weak limit of the solution as ∈ → 0, by introducing a quantum condition. This allows us to calculate the waveform of the local oscillations up to phase-shifts when ∈ is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buslaev, V. S., and Fomin, V. N., (1962) ‘An inverse scattering problem for the one-dimensional Schrödinger equation on the entire axis’, (in Russian), Vestnik Leningrad Uniiv. 17, 56–64.

    Google Scholar 

  2. Cohen, A., and Kappeler, T., (1985) ‘Scattering and inverse scattering for steplike potentials in the Schrödinger equation’, Indiana U. Math. Jour. 34, 127–180.

    Article  MathSciNet  MATH  Google Scholar 

  3. Flaschka, H., Forest, M.G., and McLaughlin, D. W., (1980) ‘Multiphase averaging and the inverse spectral solutions of the Korteweg—de Vries equation’, Comm. Pure Appl. Math. 33, 739–784.

    Article  MathSciNet  MATH  Google Scholar 

  4. Lax, P.D., and Levermore, C.D., (1983) ‘The small dispersion limit of the Korteweg-de Vries equation I, II, III’, Comm. Pure Appl. Math. 36, 253–290, 571–593, 809––829.

    Google Scholar 

  5. Levermore, C. D., (1988) ‘The hyperbolic nature of the zero dispersion KdV limit’, Comm. P.D.E., 495–614.

    Google Scholar 

  6. Venakides, S., (1985) ‘The zero dispersion limit of the Korteweg-de Vries equation with nontrivial reflection coefficient’, Comm. Pure Appl. Math. 38, 125–155.

    Article  MathSciNet  MATH  Google Scholar 

  7. Venakides, S., (1985) ‘The generation of modulated wavetrains in the solution of the Korteweg-de Vries equation’, Comm. Pure Appl. Math. 38, 883–909.

    Article  MathSciNet  MATH  Google Scholar 

  8. Venakides, S., (1987) ‘The zero dispersion limit of the Korteweg-de Vries equation with periodic initial data’, AMS Trans. 301, 189–225.

    Article  MathSciNet  MATH  Google Scholar 

  9. Venakides, S., (1989) ‘The continuum limit of theta functions’, Comm. PUre Appl. Math., 42, 711–728.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bender C.M., and Orszag, Steven A., (1978) Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill Publishers.

    MATH  Google Scholar 

  11. Venakides, S., ’The Korteweg—de Vries equation with small dispersion: higher order Lax—Levermore theory, Comm. Pure Appl. Math., in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Venakides, S. (1991). The Korteweg-de Vries Equation with Small Dispersion: Higher Order Lax-Levermore Theory. In: Spigler, R. (eds) Applied and Industrial Mathematics. Mathematics and Its Applications, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1908-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1908-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7351-6

  • Online ISBN: 978-94-009-1908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics