Skip to main content

Neuropeptides and Behavioural and Physiological Stress Response: The Role of Vasopressin and Related Peptides

  • Chapter
Psychobiology of Stress

Part of the book series: NATO ASI Series ((ASID,volume 54))

Abstract

Classical views on stress mechanisms maintain that the activation of the adrenal medulla and the cortex represent the major neuroendocrine aspects of stress. The functional significance of these hormones in both physiological and behavioural stress responses have been repeatedly emphasized (e.g. Mason, 1968; Selye, 1976; Bohus, 1984; Oliverio, 1987; etc.). Besides these stress hormones of the first generation a new class of neuroendocrine principles emerged that also serve stress functions (Bohus, 1984). These second generation consists of long known pituitary and their target hormones (e.g. prolactin, vasopressin, oxytocin, growth hormone, gonadotrophins, testosterone, thyroid-stimulating hormone, thyroxine; see Bohus, 1984; Oliverio, 1987) with a recently established stress function. In addition, newly discovered hormones such as the endorphins and enkephalins (e.g. Guillemin et al., 1977; Amir et al., 1980) and of hypothalamic neuroendocrine factors such as the Corticotropin-Releasing Hormone (CRH) from the hypothalamus (e.g. Koob, 1985) belongs to the family of stress hormones. For the majority of the pituitary and hypothalamic hormones neuronal cell bodies and axons with terminals can be localized in a number of brain regions outside the hypothalamus (see Nieuwenhuys, 1985). Accordingly, the brain should be added to the neuroendocrine compartment of the body: the brain is both a source and target of these hormones. These hormones with oligo- or polypeptide structures, are designated as neuropeptides both because of their action on nervous tissue (De Wied, 1987) and their neuronal origin (Bloom, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amir, S., Z.W. Brown and Z. Amit (1980). The role of endorphins in stress: evidence and speculations. Neurosci. Biobehav. Rev. 4:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Benus, R.F. (1988). Aggression and coping. Difference in behavioral strategies between aggressive and nonaggressive male mice. Ph.D. Thesis, University of Groningen.

    Google Scholar 

  • Berecek, K.H., H.R. Olpe, R.S.G. Jones and K.G. Hofbauer (1984). Microinjection of vasopressin into the locus coeruieus of conscious rat. Am. J. Physiol. 247:H675–681.

    PubMed  CAS  Google Scholar 

  • Berridge, C.W. and A.J. Dunn (1986). Corticotropin-releasing factor elicits naloxone sensitive stress-like alterations in exploratory behavior in mice. Regul. Peptides 16:83–93.

    Article  CAS  Google Scholar 

  • Bloom, F.E. (1987). Molecular diversity and cellular functions of neuropeptides. In: E.R. De Kloet, V.M. Wiegant and D. De Wied, Eds., Progr. in Brain Res., Vol. 72, pp 213–220, Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B. (1973). Pituitary-adrenal influences on avoidance and approach behavior of the rat. In: W.H. Gispen, B.H. Marks and D. De Wied, Eds., Progress in Brain Research, Vol. 39, pp 407–420. Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B. (1974). The influence of pituitary peptides on brain centers controlling autonomic responses. In: D.F. Swaab and J.P. Schadé, Eds., Progress in Brain Research, Vol. 41, pp 175–183, Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B. (1975). Pituitary peptides and adaptive autonomic responses. In: W.H. Gispen, Tj.B. van Wimersma Greidanus and D. De Wied, Eds., Progress in Brain Research, Vol 42, pp 275–283, Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B. (1977). Pituitary neuropeptides, emotional behaviour and cardiac responses. In: W. De Jong, A.P. Provoost and A.P. Shapiro, Eds., Progress in Brain Research, Vol. 47, pp 277–288, Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B. (1982). Neuropeptides and memory. In: R.L. Isaacson and N.E. Spear, Eds., The Expression of Knowledge, pp 141–177, New York: Plenum.

    Google Scholar 

  • Bohus, B. (1984). Neuroendocrine interactions with brain and behavior: a model for psychoneuroimmunology? In: R.E. Ballieux, J.F. Fielding and A. L’Abbate, Eds., Breakdown in Human Adaptation to Stress: Towards a Multidisciplinary Approach, Vol. 2, pp 638–652, “s Gravenhage: Nijhoff.

    Google Scholar 

  • Bohus, B. (1985). Acute cardiac responses to emotional stressors in the rat; the involvement of neuroendocrine mechanisms. In: J.F. Orlebeke, G. Mulder and L.J.P. van Doornen, Eds., Psychophysiology of Cardiovascular Control, pp 131–150, New York: Plenum.

    Google Scholar 

  • Bohus, B. (1988). Limbic-midbrain mechanisms and behavioral physiology of interactions with CRF, ACTH and adrenal hormones. In: D. Hellhammer, I. Florin and H. Weiner, Eds., Neurobiological Approach to Human Disease, pp 267–285, Toronto: Huber.

    Google Scholar 

  • Bohus, B., W.H. Gispen and D. De Wied (1973). Effect of lysine-vasopressin and ACTH 4–10 on conditioned avoidance behavior of hypophysectomized rats. Neuroendocrinol. 11:137–143.

    Article  CAS  Google Scholar 

  • Bohus, B., Tj.B. Van Wimersma Greidanus and D. De Wied (1975). Behavioral and endocrine responses of rats with hereditary hypothalamic diabetes insipidus (Brattleboro strain). Physiol. Behav. 14:609–615.

    Article  PubMed  CAS  Google Scholar 

  • Bohus, B., W. De Jong, A.P. Provoost and D. De Wied (1976). Emotionales Verhalten und Reaktionen des Kreislaufs und Endokriniums bei Ratten. In: E.W. Von Eiff, Ed., Seelische und körperliche Störungen durch Stress, pp 140–157, Stuttgart, Gustav Fischer.

    Google Scholar 

  • Bohus, B., L. Conti, G.L. Kovàcs and D.H.G. Versteeg (1982). Modulation of memory processes by neuropeptides: interaction with neurotransmitter systems. In: C. Ajmone Marsan and H.-J. Matthies, Eds., Neuronal Plasticity and Memory Formation, pp. 75–87, New York: Raven.

    Google Scholar 

  • Bohus, B., R.F. Benus, D.S. Fokkema, J.M. Koolhaas, C. Nyakas, G.Van Oortmerssen, A.J.A. Prins, A.J.H. de Ruiter, A.J.W. Scheurink and A.B. Steffens (1987). Neuroendocrine states and behavioral and physiological stress responses. In: E.R. De Kloet, V.M. Wiegant and D. De Wied, Eds., Progress in Brain Research, Vol. 72, pp 57–70, Amsterdam: Elsevier.

    Google Scholar 

  • Bohus, B., C.A.M. Versteeg, W. De Jong, K. Cransberg and J.G. Kooy (1983). Neurohypophysial hormones and central cardiovascular control. In: B.A. Cross and G. Leng, Eds., Progress in Brain Research, Vol. 69, pp 445–457, Amsterdam: Elsevier.

    Google Scholar 

  • Bonus, B., J.M. Koolhaas, P.G.M. Luiten, C.A.M. Versteeg, S.M. Korte and D. Jaarsma (1989). Vasopressin and related peptides: involvement in central cardiovascular regulation. In: F.P. Nijkamp and D. De Wied, Eds., Neuropeptides, Brain and Hypertension, pp 000, Amsterdam: Elsevier.

    Google Scholar 

  • Brattström, A., W. De Jong and D. De Wied (1986). Barorezeptorischer Herz-Reflex während zentraler Vasopressin-Wirkung. Z. Klin. Med. 41:1267–1289.

    Google Scholar 

  • Britton, D.R., G.F. Koob, J. Rivier and W. Vale (1982). Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sci. 31:363–367.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.R., L.A. Fisher, J. Spiess, C. Rivier, J. Rivier and W. Vale (1982). Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology 111:928–931.

    Article  PubMed  CAS  Google Scholar 

  • Buijs, R.M. (1983). Vasopressin and oxytocin -- their role in neurotransmission. Pharmacol. Ther. 22:127–141.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D.A. and S.L. Lightman (1987). Oxytocin stress responses are dependent upon emotionality. Psychoneuroendocrinology 12:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Charpak, S., W.E. Armstrong, M. Muhlethaler and J.J. Dreifuss (1984). Stimulatory action of oxytocin on neurons of the dorsal motor nucleus of the vagus nerve. Brain Res. 300:83–89.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, A.W., Jr., S. Switzer and M.M. Guinn (1980). Evidence and quantification of the vasopressin arterial pressure control in the dog. Circulat. Res. 46:58–67.

    PubMed  CAS  Google Scholar 

  • Damphney, R.A.L., A.K. Goodchild and E. Tann (1982). Role of ventromateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res. 249:223–235.

    Article  Google Scholar 

  • Darlington, D.A. and D.G. Ward (1985). Rostral pontine and caudal mesencephalic control of arterial pressure and iliac, celiac and renal vascular resistance. I: Anatomic regions. Brain Res. 361:284–300.

    Article  PubMed  CAS  Google Scholar 

  • Dean, P., P. Redgrave and I.J. Mitchell (1988). Organization of efferent projections from superior colliculus to brainstem in rat: evidence for functional output channels. In: J.P. Hicks and G. Benedek, Eds., Progr. in Brain Research, Vol. 75, pp 27–36, Amsterdam: Elsevier.

    Google Scholar 

  • Delanoy, R.L., A.J. Dunn and R. Tintner (1978). Behavioral responses to intracerebroventricularly administered neurohypophyseal peptides in mice. Horm. Behav. 11:348–362.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, G.J., R.M. Buijs, F.W. van Leeuwen, A.R. Caffe and D.F. Swaab (1985). The vasopressinergic innervation of the brain in normal and castrated rats. J. Comp. Neurol. 233:236–254.

    Article  Google Scholar 

  • De Wied, D. (1961). An assay of corticotrophin-releasing principles in hypothalamic lesioned rats. Acta Endocrinol. 37:288–297.

    PubMed  Google Scholar 

  • De Wied, D. (1976). Behavioral effects of intraventriculaly administered vasopressin and vasopressin fragments. Life Sci. 19:685–690.

    Article  PubMed  Google Scholar 

  • De Wied, D. (1987). The neuropeptide concept. In: E.R. De Kloet, V.M. Wiegant and D. De Wied, Eds., Progr. in Brain Res., Vol. 72, pp 93–108, Amsterdam: Elsevier.

    Google Scholar 

  • De Wied, D. and B. Bohus (1986). Long term and short term effects on retention of a conditioned avoidance response in rats by treatment with long acting Pitresin and O-MSH. Nature 212:1484–1486.

    Article  Google Scholar 

  • De Wied, D., B. Bohus and Tj. B. Van Wimersma Greidanus (1975). Memory deficit in rats with hereditary diabetes insipidus. Brain Res. 85:152–156.

    Article  Google Scholar 

  • Dunn, A.J. and C.W. Berridge (1987). Corticotropin-releasing factor adminsitration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol. Biochem. Behav. 27:685–691.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, A.J. and S.E. File (1987). Corticotropin-releasing factor has anxiogenic action in the social interaction test. Horm. Behav. 21:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Elands, J.P.M. (1989). Neurohypophyseal hormone receptors. University of Utrecht: Ph.D. Thesis.

    Google Scholar 

  • Engel, G.L. (1977). Emotional stress and sudden death. Psychol. Today 11:114–118.

    Google Scholar 

  • Fisher, L.A., J. Rivier, C. Rivier, J. Spiess, W. Vale and M.R. Brown (1982). Corticotropin-releasing factor (CRF): central effects on mean arterial pressure and heart rate in rats. Endocrinology 110: 2222–2234.

    Article  PubMed  CAS  Google Scholar 

  • Fliers, E., G.J. De Vries and D.F. Swaab (1985). Changes with aging in the vasopressin and oxytocin innervation of the rat brain. Brain Res. 348:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Fokkema, D.S. (1985). Social Behavior and Blood Pressure: A Study in the Rat. Ph.D. Thesis. University of Groningen.

    Google Scholar 

  • Fulwiler, C.E. and Saper, C.B., 1984, Subnuclear organisation of the efferent connections of the parabrachial nucleus in the rat, Brain Res. Rev. 7:229–259.

    Article  Google Scholar 

  • Gerfen, C.R. and P.E. Sawchenko (1984). An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris Leucoagglutinin (PHA-L). Brain Res. 290:219–238.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, D.M. (1984). Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci. 35:487–491.

    Article  PubMed  CAS  Google Scholar 

  • Gilbey, M.P., J.H. Coote, S. Fleetwood-Walker and D.F. Peterson (1982). The influence of the paraventricular-spinal pathway and oxytocin and vasopressin on sympathetic preganglionic neurones. Brain Res. 251:283–296.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, G. and P. Lowry (1979). Corticotrophin releasing factor may be modulated by vasopressin. Nature 278:463–464.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, G., E. Linton and P. Lowry (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin, Nature (London) 299:355–357.

    Article  PubMed  CAS  Google Scholar 

  • Graham, F.K. and R.K. Clifton (1966). Heart rate changes as a component of the orienting response. Psychol Bull. 65:305–320.

    Article  PubMed  CAS  Google Scholar 

  • Granata, A.R., V. Numao, M. Kumada and D.J. Reis (1986). Al-noradrenergic neurons tonically inhibit sympathoexcitatory neurons of the Cl area in rat brainstem. Brain Res. 377:127–146.

    Article  PubMed  CAS  Google Scholar 

  • Gray, T.S. and D.J. Magnuson (1987). Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J. comp. Neurol. 262:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Gray, T.S., T.L. O’Donohue and D.J. Magnuson (1986). Neuropeptide Y innervation of amygdaloid and hypothalamic neurons that project to the dorsal vagal complex in rat. Peptides 7:341–349.

    Article  PubMed  CAS  Google Scholar 

  • Guillemin, R., T. Vargo, J. Rossier, S. Minick, N. Ling, J. Rivier, W. Vale and F. Bloom (1977). Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary. Science 197:1367–1369.

    Article  PubMed  CAS  Google Scholar 

  • Hagan, J.J. and B. Bohus (1984). Vasopressin prolongs bradycardiac response during orientation. Behav. Neural Biol. 41:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Hagan, J.J., B. Bohus and D. De Wied (1982). Post-training vasopressin injections may facilitate or delay shuttle-box avoidance extinction. Behav. Neur. Biol. 36:211–228.

    Article  CAS  Google Scholar 

  • Hanley, M.R., H.P. Benton, S.L. Lightman, K. Todd, E.A. Bone, P. Fretten, S. Palmer, C.J. Kirk and R.H. Michell (1984). A vasopressin-like peptide in the mammalian sympathetic nervous system. Nature 309:259–261.

    Article  Google Scholar 

  • Henry, J.P. and P.M. Stephens (1977). Stress, Health, and the Social Environment. A Sociobiological Approach to Medicine. Berlin: Springer.

    Google Scholar 

  • Hilton, S.M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. J. exp. Biol. 100:159–174.

    PubMed  CAS  Google Scholar 

  • Hilton, S.M. and K.M. Spyer (1980). Central nervous regulation of vascular resistance. Ann. Rev. Physiol. 42:399–411.

    Article  CAS  Google Scholar 

  • Hilton, S.M. and A.W. Zbrozyna (1963). Amygdaloid region for defense reactions and as efferent pathway to the brainstem. J. Physiol. (London) 165:160–173.

    PubMed  CAS  Google Scholar 

  • Jard, S., C. Barberis, S. Audigier and E. Tribollet (1987). Neurohypophyseal hormone receptor systems in brain and periphery. In: E.R. De Kloet, V.M. Wiegant and D. De Wied, Eds., Neuropeptides and Brain Function, Progr. in Brain Res., Vol. 72, pp 173–187, Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Jard, S., R.C. Gaillard, G. Guillon, J. Marie, P. Schoenenberg, A.F. Muller, M. Manning and W.H. Sawyer (1986). Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol. Pharmacol. 30:171–177.

    PubMed  CAS  Google Scholar 

  • Kalia, M. and K. Fuxe (1985a). Rat medulla oblongata. I: Cytoarchitectonic considerations. J. Comp. Neurol. 233:285–307.

    Article  PubMed  CAS  Google Scholar 

  • Kalia, M., K. Fuxe and M. Goldstein (1985b). Rat medulla oblongata. II: Noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers and presumptive terminal processes. J. Comp. Neurol. 233:308–332.

    Article  PubMed  CAS  Google Scholar 

  • Kalia, M., K. Fuxe and M. Goldstein (1985c). Rat medulla oblongata. III: Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. J. Comp. Neurol. 233:333–349.

    Article  PubMed  CAS  Google Scholar 

  • Kapp, B.S., M. Gallagher, M.D. Underwood, C.L. McNall and D. Whitehorn (1982). Cardiovascular responses elicited by electrical stimulation of the amygdala central nucleus in the rabbit. Brain Res. 234:251–262.

    Article  PubMed  CAS  Google Scholar 

  • Koob, G.F. (1985). Stress, Corticotropin-releasing Factor and Behavior. Perspectives on Behavioral Medicine 2:39–52.

    Google Scholar 

  • Koob, G.F., C. Lebrun, J.L. Martinez Jr., R. Dantzer, M. Le Moal and F.E. Bloom (1985). Arginine vasopressin, stress and memory. Ann. N. Y. Acad. Sci. 444:194–202.

    Article  PubMed  CAS  Google Scholar 

  • Koolhaas, J.M., D.S. Fokkema, B. Bohus and G.A. Van Oortmerssen (1986). Individual differentation in blood pressure reactivity and behaviour of male rats. In: T.M. Dembrosky, T.H. Schmidt and G. Blümchen, Eds., Biobehavioral Bases of Coronary Heart Disease, Vol. 3, pp 517–526.

    Google Scholar 

  • Korner, P.K. (1979). Central nervous control of autonomic cardiovascular function. In: F. Hamilton, Ed., Handbook of Physiology, Cardiovascular Control, pp 691–739, Washington: American Physiological Society.

    Google Scholar 

  • Kovàcs, G.L., B. Bohus and D.H.G. Versteeg (1979). The effects of vasopressin on memory processes: the role of noradrenergic transmission. Neuroscience 4:1529–1537.

    Article  PubMed  Google Scholar 

  • Laczi, F., O. Gaffori, E.R. De Kloet and D. De Wied (1983a). Differential regulation in immunoreactive arginine-vasopressin content of microdissected brain regions during passive avoidance behavior. Brain Res. 260:342–346.

    Article  PubMed  CAS  Google Scholar 

  • Laczi, F., O. Gaffori, E.R. De Kloet and D. De Wied (1983b). Arginine-vasopressin of hippocampus and amygdala during passive avoidance behavior in rats. Brain Res. 280:309–315.

    Article  PubMed  CAS  Google Scholar 

  • Laczi, F., O. Gaffori, M. Fekete, E.R. De Kloet and D. De Wied (1984). Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats. Life Sci. 34:2385–2391.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R.E., J.W.E. Heil, D. Ganten, K. Hermann, T. Unger and W. Rascher (1983). Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology 37:314–316.

    Article  PubMed  CAS  Google Scholar 

  • LeDoux, J.E., J. Iwata, P. Cicchetti and D.J. Reis (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8:2517–2529.

    PubMed  CAS  Google Scholar 

  • Le Moal, M., R. Dantzer, P. Mormede, A. Baduel, C. Lebrun, A. Ettenberg, D. Van der Kooy, J. Wenger, S. Deyo, G.F. Koob and F.E. Bloom (1984). Behavioral effects of peripheral administration of arginine vasopressin: a review of our search for a mode of action and a hypothesis. Psychoneuroendocrinology 9:319–339.

    Article  PubMed  Google Scholar 

  • Loewy, A.D. and S. McKellar (1980). The neuroanatomical basis of central cardiovascular control. Fed. Proc. 39:2495–2503.

    PubMed  CAS  Google Scholar 

  • Mason, J.W. (1968). A review of psychoendocrine research on the sympathetic-adrenomedullary system. Psychosomat. Med., 30:631–653.

    Google Scholar 

  • Meisenberg, G. (1981). Short-term behavioral effects of neurohypophyseal peptides in mice. Peptides 2:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg, G. and W.H. Simmons (1982). Behavioral effects of intracerebroventricularly administered neurohypophyseal hormone analogs in mice. Pharmacol. Biochem. Behav. 16:819–825.

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg, G. and W.H. Simmons (1983). Centrally mediated effects of neurohypophyseal hormones. Neurosci. Biobehav. Rev. 7:263–280.

    Article  PubMed  CAS  Google Scholar 

  • Mens, W.B.J., M.A.H. Van Egmond, A.A. De Rotte and Tj. B. Van Wimersma Greidanus (1982). Neurohypophyseal peptide levels in CSF and plasma during passive avoidance behavior in rats. Horm. Behav. 16:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, I.J., P. Dean and P. Redgrave (1988). The projection from superior colliculus to cuneiform area in the rat. II. Defence-like responses to stimulation with glutamate in cuneiform nucleus and surrounding structures. Exp. Brain Res. 72:626–639.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R., T.E. Salt, M.V. Sofroniew and R.G. Hill (1980). Actions of microiontophoretically applied oxytocin, and immunohistochemical localisation of oxytocin, vasopressin and neurophysin in the rat caudal medulla. Neurosci. Lett. 18:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi, G. and H.W. Magoun (1949). Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophysiol. 1:455–473.

    PubMed  CAS  Google Scholar 

  • Mraovitch, S., M. Kamuda and D.J. Reis (1982). Role of the nucleus parabrachialis in cardiovascular regulation in cat. Brain Res. 232:57–75.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys, R. (1985). Chemoarchitecture of the Brain, Berlin: Springer.

    Google Scholar 

  • Oliverio, A. (1987). Endocrine aspects of stress: central and peripheral mechanisms. In: P.R. Wiepkema and P.W.M. Van Adrichem, Eds., Biology of Stress in Farm Animals, pp 3–12, Dordrecht: Nijhoff.

    Google Scholar 

  • Nyakas, C, A.J.A. Prins and B. Bohus (1989). Age-related alterations in cardiac response to emotional stress: relations to behavioural reactivity in the rat. Physiol. Behav. 00:000.

    Google Scholar 

  • Obrist, P.A. (1981). Cardiovascular Psycho-physiology: A Perspective. New York: Plenum.

    Google Scholar 

  • Pilowsky, P.M., V. Kapoor, J.B. Minson, M.J. West and J.P. Chalmers (1984). Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection. Brain Res. 366:354–352.

    Article  Google Scholar 

  • Pittman, Q. and L.G. Franklin (1985). Vasopressin antagonist in nucleus tractus solitarius/vagal area reduces pressor response to paraventricular nucleus stimulation in rats. Neurosci. Lett. 56:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, Q., T.D. Lawrence and L. McLean (1982). Central effects of argvasopressin on blood pressure in rats. Endocrinology 110:1058–1060.

    Article  PubMed  CAS  Google Scholar 

  • Redgrave, P., P. Dean, I.J. Mitchell, A. Odekunle and A. Clark (1988). The projection from superior colliculus to cuneiform area in the rat. I. Anatomical studies. Exp. Brain Res. 72:611–625.

    Article  PubMed  CAS  Google Scholar 

  • Rees, H.D., A.J. Dunn, and P.M. Iuvone (1976). Behavioral and biochemical response of mice to the intraventricular administration of ACTH analogs and lysine vasopressin. Life Sci. 18:1333–1340.

    Article  PubMed  CAS  Google Scholar 

  • Richter, D. (1985). Biosynthessis of vasopressin. In: D. Ganten and D. Pfaff, Eds., Current Topics in Neuroendocrinology, Vol. 4, pp 1–16 Berlin: Springer.

    Google Scholar 

  • Rohmeiss, P., H. Becker, R. Dietrich, F. Luft and T. Unger (1986). Vasopressin: mechanism of central cardiovascular action in conscious rats. J. Cardiovasc. Pharmacol. 8:689–696.

    PubMed  CAS  Google Scholar 

  • Roozendaal, B., W.A. Van Gool, D.F. Swaab, J.E. Hoogendijk and M. Mirmiran (1987). Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 409:259–264.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C.A., D.A. Ruggiero, D.J. Park, T.H. Joh, A.F. Sved, J. Fernandez-Pardal and D.J. Reis (1984). Tonic vasomotor control by rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing CI adrenaline neurons on arterial pressue, heart rate and plasma catecholamines and vasopressin. J. Neuroscience 4:474–494.

    CAS  Google Scholar 

  • Sahgal, A. (1984). A critique of the vasopressin-memory hypothesis. Psychopharmacology 83:215–228.

    Article  PubMed  CAS  Google Scholar 

  • Seley, H. (1976). Stress in Health and Disease. Boston: Butterworths.

    Google Scholar 

  • Schmid, P.G., F.M. Scharabi and G.B. Guo (1984). Vasopressin and oxytocin in the neuronal control of the circulation. Fed. Proc. 43:97–102.

    PubMed  CAS  Google Scholar 

  • Smith, O.A. and J.L. DeVito (1984). Central neural integration for the control of autonomic responses associated with emotion. Ann. Rev. Neurosci. 7:43–65.

    Article  PubMed  CAS  Google Scholar 

  • Smith, O.A., C.A. Astley, J.L. DeVito, J.M. Stein and K.E. Walsh (1980). Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Fed. Proc. 39:2487–2494.

    PubMed  CAS  Google Scholar 

  • Spyer, K.M. (1982). Central nervous integration of cardiovascular control. J. Exp. Biol. 100:109–128.

    PubMed  CAS  Google Scholar 

  • Sutton, R.E., G.F. Koob, M. Le Moal, J. Rivier and W. Vale (1982). Corticotropin releasing factor produces behavioural activation in rats. Nature 297:331–333.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W. and W.M. Cowan (1979). The connections of the septal region in the rat. J. Comp. Neurol. 186:621–656.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W. and P.E. Sawchenko (1983). Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann. Rev. Neurosci. 6:269–324.

    Article  PubMed  CAS  Google Scholar 

  • Ter Horst, G.J., H.J. Groenewegen, H. Karst and P.G.M. Luiten (1984). Phaseolus vulgaris leucoagglutinin immunohistochemistry. A comparison between autoradiographic and lectin tracing of neuronal efferents. Brain Res. 307:379–383.

    Article  PubMed  Google Scholar 

  • Thatcher-Britto, K., J. Morgan, J. Rivier, W. Vale and G.F. Koob (1985). Chlordiazepoxide attenuates response suppression induced by corticotropin-releasing factor in the conflict test. Psychopharmacology 86:170–174.

    Article  Google Scholar 

  • Thompson, E.A. and D. De Wied (1973). The relationship between the antidiuretic activity of rat eye plexus blood and passive avoidance behaviour. Physiol. Behav. 11:377–380.

    Article  PubMed  CAS  Google Scholar 

  • Undesser, K.P., A.J. Trapani, W.W. Morgan and V.S. Bishop (1986). Role of central catecholamines on the potentiation of the baroreceptor reflex produced by vasopressin. Circ. Res. 58:882–889.

    PubMed  CAS  Google Scholar 

  • Unger, T., P. Rohmeiss, H. Becker, D. Ganten, R.E. Land and M. Petty (1984). Sympathetic activation following central vasopressin receptor stimulation in conscious rats. J. Hypertension 2 (suppl.3):25–27.

    CAS  Google Scholar 

  • Vallejo, M., D.A. Carter and S.L. Lightman (1984). Haemodynamic effects of arginine-vasopressin microinjections into the nucleus tractus solitarius: a comparative study of vasopressin, a selective vasopressin agonist and antagonist, and oxytocin. Neurosci. Lett. 52:247–252.

    Article  PubMed  CAS  Google Scholar 

  • Valtin, H. and H.A. Schroeder (1964). Familial hypothalamic diabetes insipidus in rats (Brattleboro strain). Amer. J. Physiol. 206:425–430.

    PubMed  CAS  Google Scholar 

  • Van Wimersma Greidanus, Tj.B., G. Croiset, H. Goedemans and J. Dogterom (1979). Vasopressin levels in peripheral blood and in cerebrospinal fluid during passive and active avoidance behavior in rats. Horm. Behav. 12:103–111.

    Article  PubMed  Google Scholar 

  • Veening, J.G., L.W. Swanson and P.E. Sawchenko (1984). The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study. Brain Res. 303:337–357.

    Article  PubMed  CAS  Google Scholar 

  • Verney, E.B. (1947). The antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond., Ser. B 135:25–105.

    Article  CAS  Google Scholar 

  • Versteeg, C.A.M., B. Bohus and W. De Jong (1982a). Attenuation by arginine- and desglycinamide-lysine-vasopressin of a centrally evoked pressor response. J. Auton. Nerv. Syst. 6:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Versteeg, C.A.M., B. Bohus and W. De Jong (1982b). Inhibition of centrally-evoked pressor responses by neurohypophyseal peptides and their fragments. Neuropharmacology 21:1939–1964.

    Article  Google Scholar 

  • Versteeg, C.A.M., K. Cransberg, W. De Jong and B. Bonus (1983a). Reduction of a centrally induced presssor response by neurohypophyseal peptides: the involvement of lower brainstem mechanisms. Eur. J. Pharmacol. 94:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Versteeg, C.A.M., W. De Jong and B. Bohus (1983b). Arginine-8-vasopressin inhibits centrally induced pressor response by involving hippocampal mechanisms. Brain Res. 292:317–326.

    Article  Google Scholar 

  • Weindl, A. and M. Sofroniew (1985). Neuroanatomical pathways related to vasopressin In: D. Ganten and D. Pfaff, Eds., Current Topics in Neuroendocrinology, Vol. 4, pp 137–196, Berlin: Springer.

    Google Scholar 

  • Williams, T.D.M., D.A. Carter and S.L. Lightman (1985). Sexual dimorphism in the posterior pituitary response to stress in the rat. Endocrinology 116:738–740.

    Article  PubMed  CAS  Google Scholar 

  • Whitnall, M.H., E. Mezey and H. Gainer (1985). Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature: 317:248–250.

    Article  PubMed  CAS  Google Scholar 

  • Yamano, M., C.J. Hillyard, S. Girgis, I. MacIntyre, P.C. Emson and M. Tohyama (1988). Presence of a substance-P-like immunoreactive neuron system from the parabrachial area to the central amygdaloid nucleus of the rat with reference to coexistence with calcitonin gene-related peptide. Brain Res. 451:179–188.

    Article  PubMed  CAS  Google Scholar 

  • Yerkes, R.M. and J.D. Dodson (1908). The relation of strentgh of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18:459–482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bohus, B. et al. (1990). Neuropeptides and Behavioural and Physiological Stress Response: The Role of Vasopressin and Related Peptides. In: Puglisi-Allegra, S., Oliverio, A. (eds) Psychobiology of Stress. NATO ASI Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1990-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1990-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7390-5

  • Online ISBN: 978-94-009-1990-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics