Skip to main content

Part of the book series: Mathematics and Its Applications (Soviet Series) ((MAIA,volume 61))

Abstract

The polaron functional integral has its origin in the quantum mechanics of an electron coupled to a polar crystal. We disregard here this origin, which is fairly extensively discussed in [1] with references to the original work. Rather we want to focus on the mathematical structure of the polaron functional integral and on its relation to statistical mechanics models and to random motion in random environments. We summarize the few rigorous results and list some challenging open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Spohn, Effective mass of the polaron: a functional integral approach, Ann.Pliys. 175, 278 (1987)

    Article  MathSciNet  Google Scholar 

  2. H. Fröhlich, Adv. in Physics 3, 325 (1954)

    Article  Google Scholar 

  3. G.D. Mahan and J.J. Hopfield, Phys.Rev.Lett. 12, 241 (1964)

    Article  Google Scholar 

  4. M.D. Donsker and S.R.S. Varadhan, Comm. Pure Appl. Math. 36, 505 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. S.R.S. Varadhan, Appendix to: Euclidean quantum field theory by K. Symanzik. In: Local Quantum Field Theory, ed. R. Jost, Enrico-Fermi-School, Course 45. Academic Press, New York, 1969

    Google Scholar 

  6. G. Gallavotti, J. Ginibre, and G. Velo, Lett.Nuov.Cim. 4, 1293 (1970)

    Article  Google Scholar 

  7. M.J. Westwater, Comm.Math.Phys. 72, 131 (1980) and 84, 459 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Gallavotti, Rev.Mod.Phys. 57, 471 (1985)

    Article  MathSciNet  Google Scholar 

  9. R.L. Dobrushin, Math.USSR Sbornik 23, 13 (1974)

    Article  MATH  Google Scholar 

  10. R.L. Dobrushin, Comm.Math.Phys. 32, 269 (1973)

    Article  MathSciNet  Google Scholar 

  11. J. Fröhlich, Fortschritte der Physik 22, 159 (1974)

    Article  Google Scholar 

  12. R. Manka, Physics Letters 67A 311 (1978)

    Google Scholar 

  13. N. Tokuda, H. Shoji, and K. Yoneya, J.Phys. C14 4281 (1981)

    Google Scholar 

  14. J. Adamowski, B. Gerlach, and H. Leschke, Physics Letters 79A, 249 (1981)

    Google Scholar 

  15. L.P. Gross, Ann.Phys. 99, 1 (1976)

    Article  Google Scholar 

  16. R.P. Feynman, Phys.Rev. 97, 660 (1955)

    Article  MATH  Google Scholar 

  17. J. Adamowski, B. Gerlach, and H. Leschke, Feynman’s approach to the polaron problem generalized to arbitrary quadratic actions. In: Functional Integrations eds. J.P. Antoine and E. Tirapequi. Plenum, New York, 1978

    Google Scholar 

  18. L. Accardi and S. O11a, On the polaron asymptotics at finite coupling constant. In: Quantum Probability and Applications II, eds. L. Accardi and W. von Waldenfels. Lecture Notes in Mathematics 1139. Springer, Berlin 1985

    Chapter  Google Scholar 

  19. E.H. Lieb and K. Yamazaki, Phys. Rev. 111 728 (1958)

    Article  MATH  Google Scholar 

  20. H. Spohn, J.Phys. A19, 3623 (1986)

    MathSciNet  Google Scholar 

  21. P.C. Hemmer and J.L. Lebowitz, Systems with weak long-range potentials. In: Phase Transitions and Critical Phenomena, Vol. Sb, eds. C. Domb and M.S. Green, Academic Press, London, 1976

    Google Scholar 

  22. E. Lieb, Stud.Appl.Math. 57, 93 (1977)

    MathSciNet  Google Scholar 

  23. E. Bolthausen, talk at BiBoS meeting, Dec. 1985

    Google Scholar 

  24. P. Hall and C.C. Heyde, Martingale Limit Theory and its Applications. Academic Press, New York, 1980

    Google Scholar 

  25. C. Kipnis and S.R.S. Varadhan, Comm.Math.Phys. 106, 1 (1986)

    Article  MathSciNet  Google Scholar 

  26. A. DeMasi, P. Ferrari, S. Goldstein, and D. Wick,J.Stat.Phys. 55, 787(1989)

    Article  MathSciNet  Google Scholar 

  27. J. Messer and H. Spohn, J.Stat.Phys. 29, 561 (1982)

    Article  MathSciNet  Google Scholar 

  28. R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics. Springer, Berlin 1985.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Spohn, H. (1990). The Polaron Functional Integral. In: Albeverio, S., Streit, L., Blanchard, P. (eds) Stochastic Processes and their Applications. Mathematics and Its Applications (Soviet Series), vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2117-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2117-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7452-0

  • Online ISBN: 978-94-009-2117-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics