Skip to main content

Short-lived isotope kinetics: a window to the inside

  • Chapter
Research Instrumentation for the 21st Century

Abstract

An integrated approach to studying the effects of environmental factors on plants is described. The central theme of the system is the use of CO2 labelled with 11C supplied continuously to the plant and following the emitted radiation in vivo in the leaf, the phloem, and the various sinks. The system consists of six components and with minor changes can be used with other tracers such as 13N for nitrogen fixation studies. Because of the short half-life of the isotope, several experiments can be carried out on the same plant under the same environmental conditions without disturbing the plant. When this system is coupled with mathematical models of phloem transport and carbon allocation a host of ecologically, agriculturally, and genetically important questions can be answered (redundent). Carbon assimilation and allocation patterns in plant leaves were measured using this system. The concepts and analytical techniques of tracer kinetics of extended square wave (ESW) input of 11CO2 were used in calculating the parameters of carbon allocation dynamics in plant systems under different physiological conditions. Examples of the latter include (1) recovery from mechanical agitation, (2) diurnal patterns, and (3) effects of drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, E. and Gatewood, L.C. 1979. Mathematical models in the health sciences, a computer-aided approach. Univ. of Minnesota Press, Minneapolis, Minn.

    Google Scholar 

  2. Atkins, G.L. 1969. Multicompartment models for biological systems. Methuen & Co. Ltd., London.

    Google Scholar 

  3. Austin, R.B., Bingham, J., Blackwell, R.D., Evans, L.T., Ford, M.A., Morgan, C.L. and Taylor, M. 1980. Genetic improvements in winter wheat yields since 1900 and associated physiologic changes. Journal of Agricultural Science. 94: 675–689.

    Article  Google Scholar 

  4. Boussingault, J.B. 1868. Agronomic Chimie agricole et physiologie 2e Ed Mallet Bachelier, Paris, 1860–1874, 5 Vols, (pp. 236–312).

    Google Scholar 

  5. Bergner, P.E. 1961. Tracer dynamics. I. A tentative approach and definition of fundamental concepts. Journal of theoretical Biology 2: 120.

    Article  Google Scholar 

  6. Berman, M., Shahn, E. and Weiss, M.F. 1962. The routine fitting of kinetic data to models, a mathematical formalism for digital computers. Biophysics Journal 2: 275.

    Google Scholar 

  7. Cadzow, J.A. 1973. Discrete-time systems: an introduction with interdisciplinary applications. Prentice Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  8. Callahan, A.B. and Pitzer, S.M. 1966. The applicability of Fourier Transforms Analysis to biological compartmental models. Natural automata and useful simulations. Proceedings of a symposium on Fundamental Biological Models. (H.H. Patee, E.A. Edelsack, L. Fein and A.B. Callahan, eds.) Spartan Books, 1250 Connecticut Ave., N.W., Washington, D.C., pp. 149–177.

    Google Scholar 

  9. Carlson, P.S., ed., 1980. The biology of crop productivity. Academic Press, New York.

    Google Scholar 

  10. Cirilov, S.D., Newton, J.D. and Schapira, J.P. 1966. Total cross sections for the reaction l2 C( 3 He,4 He) 11 C and 12 C( 3 He,n) l4 O. Nucl. Phys. 77: 472–176.

    Article  Google Scholar 

  11. Cochran, W.T., Cooley, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling, G.E., Nelson, E.D., Rader, C.M. and Welch, P.D. 1967. What is the Fast Fourier Transform. IEEE Transactions on Audio and Electroacoustics, Vol. Au-15, No. 2., pp. 45–79.

    Google Scholar 

  12. Cooley, J.W., Lewis, P.A.W. and Welch, P.D. 1967. Application of the Fast Fourier Transform to computation of Fourier integrals Fourier series and convolution integrals. IEEE Transactions on Audio and Electroacoustics, Vol. Au-15, No. 2, pp. 79–84.

    Google Scholar 

  13. DeMichele, D.W., Sharpe, P.J.H. and Goeschl, J.D. 1978. Toward the engineering of photosyn-thetic productivity. CRC Critical Reviews in Bioengineering 3: 23–91.

    PubMed  Google Scholar 

  14. Down, R.J., Hellmers, H. and Kramer, P.J. 1972. Engineering problems in the design and operation of phytotrons. ASHRAE J. June 1972: 47–55.

    Google Scholar 

  15. Evans, N.T.S., Ebert, M. and Moorby, J. 1963. A model for the translocation of photosynthates in the soybean. Journal of Experimental Botany 14: 221–231.

    Article  Google Scholar 

  16. Fares, Y., DeMichele, D.W., Goeschl, J.D. and Baltuskonis, D.A. 1978. Continuously produced, high specific activity 11 CO 2 for studies of photosynthesis, transport, and metabolism. International Journal of Applied Radiation and Isotopes 29: 431–441.

    Article  Google Scholar 

  17. Fensom, D.S., Williams, E.J., Aikman, D.P., Dale, J.E., Scobie, J., Ledingham, K.W.D., Drinkwater, A. and Moorby, J. 1977. Translocation of 11 CO 2 from leaves of Helianthus: preliminary results. Canadian Journal of Botany 55: 1787–1793.

    Article  Google Scholar 

  18. Finkelstein, L. and Carson, E.R. 1979. Mathematical modeling of dynamic biological systems. D.W. Hill, ed. Research Studies Press, Forest Grove, Oregon.

    Google Scholar 

  19. Fisher, D.B. 1970a. Kinetics of C-14 translocation in soybean. I. Kinetics in the stem. Plant Physiology 45: 107–113.

    Article  PubMed  CAS  Google Scholar 

  20. Fisher, D.B. 1970b. Kinetics of C-14 translocation in soybean. II. Kinetics in the leaf. Plant Physiology 45: 114–118.

    Article  PubMed  CAS  Google Scholar 

  21. Fisher, D.B. 1970c. Kinetics of C-14 translocation in soybean III. Theoretical considerations. Plant Physiology 45: 119–125.

    Article  PubMed  CAS  Google Scholar 

  22. Fisher, D.B. and Outlaw, Jr. W.H. 1979. Sucrose compartmentation in the Palisade Parenchyma of Vicia faba L. Plant Physiology 64: 481–483.

    Article  Google Scholar 

  23. Fondy, B.R. and Geiger, D.R. 1980. Effect of rapid changes in sink-source ratio on export and distribution of products of photosynthesis in leaves of Beta vulgaris L. and Phaseolus vulgaris L. Plant Physiology 66: 945–949.

    Article  PubMed  Google Scholar 

  24. Fondy, B.R. and Geiger, D.R. 1982. Diurnal pattern of translocation and carbohydrate metabolism in source leaves of Beta vulgaris L. Plant Physiology 70: 671–676.

    Article  PubMed  Google Scholar 

  25. Gardner, D.G. 1963. Resolution of multi-compartment exponential decay curves using Fourier transforms. Annals of the New York Academy of Science, Vol. 108, pp. 195–203.

    Article  CAS  Google Scholar 

  26. Gardner, D.G., Gardner, J.C., Laush, G. and Meinke, W.W. 1959. Method for the analysis of multi-component exponential decay curves. Journal of Chemical Physiology 31: 978–986.

    Article  CAS  Google Scholar 

  27. Geiger, D.R. and Fondy, B.R. 1979. A method for continuous measurement of export from a leaf. Plant Physiology 64: 361–365.

    Article  PubMed  CAS  Google Scholar 

  28. Geiger, D.R. 1979a. Measurement of Translocation. Methods of Enzymology. 69: 561–571.

    Article  Google Scholar 

  29. Geiger, D.R. 1979b. Control of partitioning and export of carbon in leaves of higher plants. Botanical Gazzet. 140 (3): 241–248.

    Article  CAS  Google Scholar 

  30. Geiger, D.R. 1975. Phloem Loading in Source Leaves. In I.F. Wardlaw, J.B. Passioura, eds. Transport and transfer processes in Plants. Academic Press, New York, pp. 167–183.

    Google Scholar 

  31. Geiger, D.R., Ploeger, B.J., Fox, T.C. and Fondy, B.R. 1983. Sources of sucrose translocated from illuminated sugar beet source leaves. Plant Physiology 72: 964–970.

    Article  PubMed  Google Scholar 

  32. Geiger, D.R., Saunders, M.A. and Cataldo, D.A. 1969. Translocation and accumulation of translocates in sugar beet petiole. Plant Physiology 44: 1657–1665.

    Article  PubMed  Google Scholar 

  33. Geiger, D.R. and Swanson, C.A. 1965a. Sucrose translocation in the sugar beet. Plant Physiology 40: 685–690.

    Article  PubMed  Google Scholar 

  34. Geiger, D.R. and Swanson, C.A. 1965b. Evaluation of selected parameters in a sugar beet translocation system. Plant Physiology 40: 942–947.

    Article  PubMed  Google Scholar 

  35. Gifford, R.M. and Evans, L.T. 1981. Photosynthesis, carbon partitioning and yield. Annual Rev. Plant Physiol. 32: 485–509.

    Article  Google Scholar 

  36. Goeschl, J.D., Magnuson, C.E., DeMichele, D.W. and Sharpe, P.J.H. 1976. Concentration dependent unloading as a necessary assumption f or a closed form mathematical model of osmotic-ally driven pressure flow in phloem. Plant Physiology 58: 556–562.

    Article  PubMed  CAS  Google Scholar 

  37. Goeschl, J.D., Magnuson, C.E., Fares, Y., Jaeger, C.H., Nelson, C.E. and Strain, B.R. 1984. Spontaneous and induced blocking and unblocking of phloem transport. Plant, Cell and Environment 7: 89–100.

    Article  Google Scholar 

  38. Hearon, J.Z. 1963. Theorems in Linear Systems. Annals of the New York Academy of Science, 108.

    Google Scholar 

  39. Hesketh, J., Jones, J.W., eds, 1980. Predicting photosynthesis for ecosystem models, Vol. II., CRC Press, Boca Raton, FL.

    Google Scholar 

  40. Hofstra, G. and Nelson, C.D. 1969a. A comparative study of translocation of assimilated 14 C from leaves of different species. Planta (Berl.) 88: 103–112.

    Article  Google Scholar 

  41. Hofstra, G. and Nelson, C.E. 1969b. The translocation of photo synthetically assimilated 11 C in corn. Canadian Journal of Botany 47: 1435–1442.

    Article  Google Scholar 

  42. Hunt, B.R. 1970. In Inverse Problem in Radiography. Mathematical Biosciences 8: 161–179.

    Article  Google Scholar 

  43. Jacquez, J.A. 1972. Compartmental Analysis in Biology and Medicine. Amsterdam: Elsevier.

    Google Scholar 

  44. Kende, H.J. and Zeevaart, J.A.D. eds. 1979. Partitioning of assimilates, summary of workshop. Pub. by Amer. Soc. Plant Physiology, Rockville, Maryland, 20850.

    Google Scholar 

  45. Kramer, P.J., Hellmers, H. and Down, R.J. 1970. SEPEL: New phytotrons for environmental research. 20 (22): 1201–1208.

    Google Scholar 

  46. Liu, Pl, Wallace, D.H. and Ozbun, J.L. 1973. Influence of translocation of photosynthetic efficiency of Phaseolus vulgaris L. Plant Physiology 52: 412–15.

    Article  PubMed  Google Scholar 

  47. Loomis, R.S., Rabbigne, R. and Ng, E. 1979. Explanatory models in crop physiology. Annu. Rev. Plant Physiology 30: 339–67.

    Article  Google Scholar 

  48. Lush, W.M. and Evans, L.T. 1974. Translocation of photosynthetic assimilate from grass leaves, as influenced by environment and species. Australian Journal of Plant Physiology 1: 417–431.

    Article  Google Scholar 

  49. Magnuson, C.E., Fares, Y., Goeschl, J.D., Nelson, C.E., Strain, B.R., Jaeger, C.H. and Bilpuch, E.G. 1982. An integrated tracer kinetics system for studying carbon uptake and allocation in plants using continuously produced 11 CO 2 . Radiation and Environmental Biophysics 21: 51–65.

    Article  Google Scholar 

  50. Magnuson, C.E., Goeschl, J.D., Sharpe, P.J.H. and DeMichele, D.W. 1979. Consequences of insufficient equations in models of the Much hypothesis of phloem transport. Plant, Cell and Environment 2: 181–188.

    Article  Google Scholar 

  51. Marquardt, D.W. 1963. An algorithm for least squares estimation of nonlinear parameters. Journal of the Society of Industrial Applied Mathematics. Vol. 11, pp. 431–441.

    Article  Google Scholar 

  52. Minchin, P.E.H. 1978. Analysis of tracer profiles with applications of phloem transport. Journal of Experimental Botany. Vol.29, 113, pp. 1441–1450.

    Article  CAS  Google Scholar 

  53. Minchin, P.E.H. 1979. The relationship between spatial and temporal tracer profiles in transport studies. Journal of Experimental Botany. Vol.30, No. 119, pp. 1171–1178.

    Google Scholar 

  54. Minchin, P.E.H. and Troughton, J.H. 1980. Quantitative interpretation of phloem translocation data. Annual Review of Plant Physiology 31: 191–215.

    Article  Google Scholar 

  55. Mitsui, A., Miyachi, S., San Pietro, A. and Tamura, S., eds. 1977. Biological solar energy conversion. Academic Press, New York.

    Google Scholar 

  56. Moorby, J. and Jarman, P.D. 1975. The use of compartmental analysis in the study of the movement of carbon through leaves. Planta (Berl.) 122: 155–168.

    Article  Google Scholar 

  57. Moorby, J., Ebert, M. and Evans, N.T.S. 1963. The translocation of 11 C-labelled photosynthate in the soybean. Journal of Experimental Botany 14: 211–220.

    Google Scholar 

  58. Moorby, J., Troughton, J.H. and Currie, B.G. 1974. Investigations of carbon transport in plants. II The effects of light and darkness and sink activity on translocation. Journal of Experimental Botany 937–944.

    Google Scholar 

  59. Neales, T.F. and Incoll, L.D. 1968. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf: a review of the hypothesis. Botanical Review 34: 107–125.

    Article  Google Scholar 

  60. Outlaw, Jr. W.H. and Fisher, D.B. 1975. Compartmentation in Vicia faba leaves I. Kinetics of 14 C in the tissue following pulse labelling. Plant Physiology 55: 699–703.

    Article  PubMed  Google Scholar 

  61. Outlaw, Jr. W.H., Fisher, D.B. and Christy, A.L. 1975. Compartmentation in Vicia faba leaves II. Kinetics of 14 C-sucrose redistribution among individual tissues following pulse labelling. Plant Physiology 55: 704–711.

    Article  PubMed  Google Scholar 

  62. Pearson, C.J. 1974. Daily changes in carbon-dioxide exchange and photosynthate translocation of leaves in Vicia faba. Planta (Berl.) 119: 59–70.

    Article  CAS  Google Scholar 

  63. Pickard, W.F., Minchin, P.E.H. and Troughton, J.H. 1978. Real time studies of carbon-11 translocation in Moonflower I. The effects of cold blocks. J. exp. Bot. 29(111). 993–1001.

    Google Scholar 

  64. Pickard, W.F., Minchin, P.E.H. and Troughton, J.H. 1978. II. The effects of metabolic and photosynthetic activity and of water stress. III. Transient inhibition of translocation in Ipomoea alba L. by small temperature reductions. Australian Journal of Plant Physiology. 5: 127–130.

    Google Scholar 

  65. Pizer, S.M., Ashare, A.B., Callahan, A.B. and Brownell, G.L. 1969. Fourier transform analysis of tracer data. Concepts and models of biomathematics (F. Heinments, ed.), Marcel Dekker, Inc., New York, pp. 105–129.

    Google Scholar 

  66. Rescingo, A. and Segre, G. 1966. Drug and tracer kinetics. Blaisdell Publishing Co., Wallham, Mass.

    Google Scholar 

  67. Rachie, K.O., Lyman, J.M., eds., 1981. Genetic engineering f or crop improvement: A Rockefeller Foundation conference. The Rockefeller Foundation. New York.

    Google Scholar 

  68. Servaites, J.C. and Geiger, D.R. 1974. Effects of light intensity and oxygen on photosynthesis and translocation in sugar beet. Plant Physiology 54: 575–578.

    Article  PubMed  Google Scholar 

  69. Siegleman, H.W. and Hind, G. eds. 1978. Photosynthetic carbon assimilation. Plenum Press, New York.

    Google Scholar 

  70. Smith, K.C., Magnuson, C.E., Goeschl, J.D. and DeMichele, D.W. 1980. A time-dependent mathematical expression of the Münch hypothesis of phloem transport. Journal of Theoretical Biology 86: 493–505.

    Article  Google Scholar 

  71. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O. and Shinohara, M. 1977. The 14 C deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. Journal of Neurochemistry 28: 897–916.

    Article  PubMed  Google Scholar 

  72. Spanner, D.O. and Prebble, J.N. 1962. The movement of tracers along the petiole of Nymphoides peltatum I. A preliminary study with 137 Cs. Journal of Experimental Botany 13: 194–306.

    Google Scholar 

  73. Thornley, J.H.M. 1976. Mathematical models in plant physiology. Academic Press, New York.

    Google Scholar 

  74. Troughton, J.H., Currie, B.G. and Chang, F.H. 1977. Relations between light level, sucrose concentration, and translocation of carbon 11 in Zea mays leaves. Plant Physiology 59: 808–820.

    Article  PubMed  Google Scholar 

  75. Troughton, J.H., Moorby, J. and Currie, B.G. 1974. Investigations of carbon transport in plants. I. The use of carbon-11 to estimate various parameters of the translocation process. Journal of Experimental Botany 25: 684–694.

    Article  Google Scholar 

  76. Vernon, L.P. and Aronoff, S. 1952. Metabolism of soybean leaves. IV. Translocation from soybean leaves. Archives of Biochemistry and Biophysics 36: 383–398.

    Article  PubMed  Google Scholar 

  77. Wareing, P.F. and Patrick, J. 1975. Source-sink relations and the partition of assimilates in the plant, pp. 481–499 in J.P. Cooper, ed. Photosynthesis and productivity in different environments. Vol. 3. International Biological Programme. Cambridge University Press, London.

    Google Scholar 

  78. Williamson, C. and Boujot, J.P. 1962. Rapport CE A 2189. Centre D’Etudes Nucleaires de Saclay. Service de Documentation. Boite Postale No. 2-G. f. sur. Yvette (Seto) France.

    Google Scholar 

  79. Wilson, J.W. 1972. Control of crop processes, pp. 7–30 in A.R. Rees, K.E. Coskshull, D.W. Hand and R.G. Hurd, eds., Crop process in controlled environment. Academic Press, New York.

    Google Scholar 

  80. Zelitch, I. 1982. The close relationship between net photosynthesis and crop yield. Bioscience 32: 796–802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gary R. Beecher

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Goeschl, J.D. et al. (1988). Short-lived isotope kinetics: a window to the inside. In: Beecher, G.R. (eds) Research Instrumentation for the 21st Century. Beltsville Symposia in Agricultural Research, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2748-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2748-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7734-7

  • Online ISBN: 978-94-009-2748-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics