Skip to main content

Part of the book series: Mechanics of Elastic Stability ((MEST,volume 13))

  • 188 Accesses

Abstract

The problem of the optimal shape of an elastic column under a concentrated axial force was formulated by Lagrange [0.1] as early as in the XVIII-th Century. He attempted to determine the shape maximizing the critical force for a column of given length and volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adali, S., Optimal shape and non-homogeneity of a non-uniformly compressed column, Int. J. Solids Structures 15 (1979), 12, 935–949.

    Article  MathSciNet  MATH  Google Scholar 

  2. Adali, S., Optimal rotating column, J. Struct. Mech. 8 (1980), 3, 257–275.

    Article  MathSciNet  Google Scholar 

  3. Adali, S., Optimization and stability of columns under opposing distributed and concentrated loads, J. Struct. Mech. 9 (1981), 1,1–28.

    Article  MathSciNet  Google Scholar 

  4. Albul, A.V., Banichuk, N.V., Barsuk, A.A., Optimization of stability of elastic bars under thermal loadings (in Russian), Mekh. Tv. Tela 15 (1980), 3, 127–133.

    MathSciNet  Google Scholar 

  5. Alekhin, V. V., Optimization of upper critical load for a bar and for a plate (in Russian), Din Spl. Sredy (Novosibirsk) 45 (1980), 3–14.

    Google Scholar 

  6. Aman, M., Okumura, A., Optimal design of bars subject to plastic buckling (in Japanese), Trans. Jap. Soc. Mech. Eng. A45 (1979), 399, 1443–1449.

    Google Scholar 

  7. Amari, M., Okumura, A., Optimum design of elastic-plastic column, Bull. JSME 23 (1980), 178, 501–509.

    Article  MathSciNet  Google Scholar 

  8. Amirkhanov, I.G., On the problems of strength and stability of a straight bar with optimal stiffness (in Russian), Tr. Semin, po Teorii Obol., Kazan. Fiz.-Tekhn. Inst. AN SSSR 1 (1969), 15–20.

    Google Scholar 

  9. Anderson, G.L., Optimal design of cantilever subjected to dissipative and nonconservative forces, J. Sound Vibr. 33 (1974), 2, 155–169.

    Article  ADS  MATH  Google Scholar 

  10. Antman, S.S., Kenney, C.S., Large buckled states of nonlinearly elastic rods under torsion, thrust, and gravity, Arch. Rat. Mech. and Analysis 76, (1981), 4, 289–338.

    MathSciNet  ADS  MATH  Google Scholar 

  11. Antonova, Z.G., Lukash, P.A., Optimal design of a constant volume bar for maximal buckling load (in Russian), Sbornik “Stroit. Konstr. Mat.,” Elista 1975, 57–74.

    Google Scholar 

  12. Armand, J.L., Applications of optimal control theory to structural optimization, analytical and numerical approach in [0.36], 15–39.

    Google Scholar 

  13. Armand, J.L., Vitte, W.J., Foundations of aeroelastic optimization and some applications to continuous systems, Stanford Univ. Dept. Aero. Astr. Rep. No. 390, Stanford 1970.

    Google Scholar 

  14. Ashley, H., Mcintosh, S.C., Jr., Applications of aeroelastic constraints in structural optimization, Proc. 12th Int. Congr. Appl. Mech. (Stanford 1968), Springer, Berlin 1969, 100–113.

    Google Scholar 

  15. Ashley, H., Zartarian, C., Piston theory - a new aerodynamic tool for the aeroelastician, J. Aero. Sci. 23 (1956), 12, 1109–1118.

    MathSciNet  Google Scholar 

  16. Ayers, K.B., Struts of minimum weight, Aircraft Engineering, 28 (1956), 324, 43–45.

    Google Scholar 

  17. Ballio, G., Sistemi aggiunti in problemi di stabilita elastica in campo non conservativo, Rend. Ist. Lombardo Sci et Let. 101 (1967), 331–360.

    Google Scholar 

  18. Ballio, G., Formulazione variazionale del problema dell’asta caricata in punta da forze non conservative, Costr. Metalliche (1967), 4,1–7.

    Google Scholar 

  19. Banichuk, N.V., Optimization of stability of a bar with elastic clamping (in Russian), Mekh. Tv. Tela 9 (1974), 4, 150–154.

    Google Scholar 

  20. Banichuk, N.V., Minimization of wing weight under divergence velocity constraint (in Russian), Uch. Zap. CAGI 9 (1978), 5, 97–103.

    MathSciNet  Google Scholar 

  21. Banichuk, N.V., Barsuk, A.A., Optimization of stability of elastic bars under simultaneous compression and torsion (in Russian), Prikl. Probl. Prochn. Plast. 2 (1982), 122–126.

    Google Scholar 

  22. Banichuk, N.V., Barsuk A.A., On a certain method of optimization of elastic stability in the case of multiple critical loadings (in Russian), Prikl. Probl. Prochn. Plast. 24 (1983), 85–89.

    Google Scholar 

  23. Banichuk, N.V., Gura, N.M., On a certain dynamic problem of optimal design (in Russian), Dinam. Spl. Sredy 41 (1979), 20–24.

    MathSciNet  Google Scholar 

  24. Banichuk, N.V., Karihaloo, B.L., On the solution of optimization problems with singularities, Int. J. Solids Structures 13 (1977), 8, 725–733.

    Article  MATH  Google Scholar 

  25. Barnes, E.R., The shape of the strongest column and some related extremal eigenvalue problems, Quart. Appl. Math. 34 (1977), 4, 393–409.

    MATH  Google Scholar 

  26. Barta, J., Säze über die Stabilität der Ruhestellung eines elastischen Gebildes, Acta Techn. Acad. Sci. Hung. 59 (1967), 1/2,165–182.

    Google Scholar 

  27. Bausic, V., Climescu, A., Solutie economica pentru dimension-area barelor din tronsoane supuse la solicitan axiale, Bul. Inst. Politechn. Iasi 8 (1962), 3–4, 289–294.

    Google Scholar 

  28. Bell, L.C., Brown, D.M., Guyed tower optimization, Comput. and Struct. 6 (1976), 6, 447–450.

    Article  Google Scholar 

  29. Blasius, H., Träger kleinster Durchbiegung und Stäbe grösster Knickfestigkeit bei gegebenem Materialverbrauch, Z. Math. Phys. 62 (1914), 182–197.

    Google Scholar 

  30. Blachut, J., Optymalne ksztaltowanie preta metoda programowania dynamicznego, Mech. Teor. Stos 15 (1977), 1, 125–130.

    MathSciNet  Google Scholar 

  31. Blachut, J., Gajewski, A., A unified approach to optimal design of columns, Sol. Mech. Archives 5 (1980), 4, 363–413.

    MATH  Google Scholar 

  32. Blachut J., Zyczkowski, M., Bimodal optimal design of clamped-clamped columns under creep conditions, Int. J. Solids Structures 20 (1984), 6, 571–577.

    Article  MATH  Google Scholar 

  33. Bochenek, B., Multimodal optimal design of a compressed column with respect to buckling in two planes, 25th Polish Solid Mech. Conf. Jachranka 1984. Int. J. Solids Structures 23 (1987), 1.

    Google Scholar 

  34. Bochenek, B., Gajewski, A., Jednomodalna i dwumodalna optymalizacja sciskanych pretow drgajacych, Mech. Teor. Stos. 22 (1984), 1/2, 185–195.

    Google Scholar 

  35. Bochenek, J.J., Zyczkowski, M., Optymalne ksztaltowanie geometrycznie nieliniowego modelu sprezystego prêta minosrodowo sciskanego, Mech. Teor. Stos. (in press.)

    Google Scholar 

  36. Bogacz, R., Irretier, H., Mahrenholtz, O., Optimal design of structures under non-conservative forces with stability constraints, (Euromech Coll. 112 on Bracketing of Eigenfrequencies, Matrafüred 1979), Budapest, 1980, 43–66.

    Google Scholar 

  37. Bogacz, R., Irretier, H., Mahrenholtz, O., Optimal design of structures subjected to follower forces, Ing.-Archiv 49 (1980), 1, 63–71.

    Article  MATH  Google Scholar 

  38. Bogacz, R., Mahrenholtz O., Optimally stable structures subjected to follower forces in [0.58], 139–157.

    Google Scholar 

  39. Bogacz, R., Mahrenholtz, O., On the optimal design of visco-elastic structures subjected to circulatory loading, in [0.72], 282–288.

    Google Scholar 

  40. Bondarenko, S.V., Stability analysis and optimization of prestressed non-linearly deforming composite bars (in Russian), Trudy Centr. Inst. Selsk. Stroit. 14 (1976), 16–27.

    Google Scholar 

  41. Brousse, P., Sur les solutions de problèmes associée en optimization des structures mecaniques, in [0.58], 159–170.

    Google Scholar 

  42. Cakiroglu, A., Yazar, E., Minimum volume design of axially compressed slender bars, Istanbul tekn. üniv. bül. 17 (1964), 2, 105–120.

    Google Scholar 

  43. Carter, W.J., Ragsdell, K.M., The optimal column, Trans. ASME H96 (1974), 1, 71–76.

    Google Scholar 

  44. Chan, D.C., Nguyen, Z., Some problems of optimal design of columns (in Russian), Prikl. Mekh. 15 (1979), 7, 95–100.

    MathSciNet  Google Scholar 

  45. Chemeris, A.N., Optimal columns with elastic supports (in Russian), Vestn. Kiev. Polit. Inst., Mashinostr. 16, (1979), 22–25.

    Google Scholar 

  46. Cheng, K., Zhong, W., Note on the optimal design to the stability of clamped column under axial compression, Acta Mech. Sin. No 1, (1983), 45–53.

    Google Scholar 

  47. Chentsov, N.G., Columns of minimal weight (in Russian), Trudy Centr. Aerogidrodinam. Inst. (CAGI) 265 (1936), 1–48.

    Google Scholar 

  48. Choi, K.K., Haug, E.J., Repeated eigenvalues in mechanical optimization problems, (Meeting on Probl. Elastic Stab. and Vibr., Pittsburgh 1981), Providence 1981, 61–86.

    MathSciNet  Google Scholar 

  49. Claudon, J.L., Characteristic curves and optimum design of two structures subjected to circulatory loads, Journal de Mécan. 14 (1975), 3, 531–543.

    MATH  Google Scholar 

  50. Claudon, J.L., Determination et maximisation de la charge critique d’une colonne de Hauger en presence d’amortissement, ZAMP 29 (1978), 2, 226–236.

    Article  ADS  MATH  Google Scholar 

  51. Claudon J.L., Sunakawa, M., Sensitivity analysis for continuous mechanical systems governed by double eigenvalue problems, in [0.60].

    Google Scholar 

  52. Claudon, J.L., Sunakawa, M., Optimizing distributed structures for maximum flutter load, AIAA Journal 19 (1981), 7, 957–959.

    Article  ADS  MATH  Google Scholar 

  53. Clausen, T., Über die Form architektonischer Säulen, Bulletin phys. math, de l’Academie St. Petersburg, 9 (1851), 368–379.

    Google Scholar 

  54. Cowper, G.R., The shear coefficient in Timoshenko beam theory, J. Appl. Mech. 33 (1966), 335–340.

    MATH  Google Scholar 

  55. Dabrowski, R., Stability of a freestanding column loaded through a roller bearing, Ing.-Archiv 54 (1984), 1, 16–24.

    Article  MATH  Google Scholar 

  56. Dinkoff, B., Levine, M., Luus, R., Optimum linear tapering in the design of columns, J. Appl. Mech. 46 (1979), 956–958.

    Article  ADS  Google Scholar 

  57. Drag, B., Gajewski, A., Optymalizacja ksztaltu preta smuklego umieszczonego w strumieniu plynu, Rozpr. Inz. 22, (1974), 1, 55–68.

    Google Scholar 

  58. Eek, R.N., Step-wise variable elastic minimal-weight columns under central compression (in Russian), Trudy Tallinsk. Polit. Inst. 428 (1977), 3–9.

    Google Scholar 

  59. Eek, R.N., Optimization of multi-step columns (in Russian) Trudy Tallinsk. Polit. Inst. 532 (1982), 9–19.

    Google Scholar 

  60. Elizarov, A.F., On minimum weight design of a compressed column (in Russian), Issl. po Str. Konstr., Tomsk 1972, 98–106.

    Google Scholar 

  61. Farshad, M., Optimum shape of continuous columns, Int. J. Mech. Sci. 16 (1974), 8, 597–601.

    Article  Google Scholar 

  62. Farshad, M., Tadjbakhsh, I., Optimum shape of columns with general conservative end loading, JOTA 11 (1973), 4, 413–420.

    Article  MathSciNet  MATH  Google Scholar 

  63. Filippov, A.P., Grinev, V.B., Application of Pontryagin’s maximum principle to optimization problems of bars (in Russian), Strojnicki Cas. 27 (1976), 1/2, 84–103.

    Google Scholar 

  64. Foley, M., Citron, S.J., A simple technique for the minimum mass design of continuous structural members, J. Appl. Mech. 44 (1977), 2, 285–290.

    Article  ADS  MATH  Google Scholar 

  65. Frauenthal, J.C., Constrained optimal design of columns against buckling, J. Struct. Mech. 1 (1972), 1, 79–89.

    Article  Google Scholar 

  66. Frauenthal, J.C., Initial postbuckling behaviour of optimally designed columns and plates, Int. J. Solids Structures 9 (1973), 1, 115–127.

    Article  Google Scholar 

  67. Gajewski, A., Stability of non-prismatic bars in a fluid flow, Bull. Acad. Sci. 18 (1970), 1, 39–48 (English summary).

    Google Scholar 

  68. Gajewski, A., Stability of non-prismatic bars in a fluid flow, Mech. Teor. Stos., 7, (1969), 3, 311–321 (Polish full text).

    Google Scholar 

  69. Gajewski, A., Pewne problemy optymalizacji ksztaltu pretow przy niekonserwatywnych zagadnieniach statecznosci, Prace Komisji Mech. Stos. PAN Krakow, 4 (1970), 3–27.

    Google Scholar 

  70. Gajewski, A., Pewne Problemy optymalnego ksztaltowania preta sciskanego sila skierowana do bieguna, Mech. Teor. Stos. 8 (1970), 2, 159–173.

    MATH  Google Scholar 

  71. Gajewski, A., On the applicability of the static and kinetic criteria of static stability, Bull. Acad. Sci. 23 515–523(1975).

    Google Scholar 

  72. Gajewski, A., On the applicability of the static and kinetic criteria of static stability, 11, 515–523 (1975).

    Google Scholar 

  73. Gajewski, A., On the applicability of the static and kinetic criteria of static stability, Czas. Techn. 74 (1970), 10, 1–8 (Polish full text).

    MathSciNet  Google Scholar 

  74. Gajewski, A., Optymalne ksztaltowanie sprezysto-plastycznego slupa przy ogolnym konserwatywnym zachowaniu sie obciazenia, Rozpr. Inz. 19 (1971), 1, 65–83.

    MATH  Google Scholar 

  75. Gajewski, A., Wybrane zagadnienia optymalizacji kszaltu pretow, Czas. Techn. 76 (1972), 4, 25–32.

    Google Scholar 

  76. Gajewski, A., Optymalne ksztaltowanie pretow sciskanych sila skierowana do bieguna przy potegowym prawie fizycznym, Mech. Teor. Stos. 18 (1980), 2, 305–318.

    MATH  Google Scholar 

  77. Gajewski, A., A note on unimodal and bimodal optimal design of vibrating compressed columns, Int. J. Mech. Sci 23 (1981), 1, 11–16.

    Article  MathSciNet  MATH  Google Scholar 

  78. Gajewski, A., Bimodal optimization of a column in an elastic medium with respect to buckling or vibration, Int. J. Mech. Sci. 27 (1985), 1/2, 45–53.

    Article  MATH  Google Scholar 

  79. Gajewski, A., Palej, R., Badanie statecznosci i optymalizacja ksztaltu sprezyscie utwierdzonego preta rozciaganego, Rozpr. Inz. 22, (1974), 2, 265–279.

    Google Scholar 

  80. Gajewski, A., Zyczkowski, M., Optimal shaping of an elastic homogeneous bar compressed by a polar force, Bull. Acad. Sci. 17 (1969), 10, 479–488 (English summary).

    Google Scholar 

  81. Gajewski, A., Zyczkowski, M., Optimal shaping of an elastic homogeneous bar compressed by a polar force, Rozpr. Inz. 17 (1969), 2, 299–329 (Polish full text).

    Google Scholar 

  82. Gajewski, A., Zyczkowski, M., Influence of longitudinal non-homogeneity on the optimal shape of a bar compressed by a force pointing towards the pole, Bull. Acad. Sci. 18 (1970), 1, 19–27, (English summary).

    Google Scholar 

  83. Gajewski, A., Zyczkowski, M., Influence of longitudinal non-homogeneity on the optimal shape of a bar compressed by a force pointing towards the pole, Rozpr. Inz. 17 (1969), 2, 299–329 (Polish full text).

    Google Scholar 

  84. Gajewski, A., Zyczkowski, M., Optimal design of elastic columns subject to the general conservative behaviour of loading, ZAMP 21 (1970), 5, 806–818.

    Article  ADS  MATH  Google Scholar 

  85. Gajewski, A., Zyczkowski, M., An optimal forming of a bar compressed with subtangential force in elastic-plastic range, Arch. Mech. Stos. 23 (1971) 2, 147–165.

    Google Scholar 

  86. Gavarini, C, Veneziano, D., Minimum weight limit design under uncertainty, Meccanica 7 (1972), 2, 98–104.

    Article  Google Scholar 

  87. Ghista, D.N., Weight optimization by structural synthesis, J. Sci. and Engng. Res. 10 (1966), 2, 199–220.

    Google Scholar 

  88. Gottleib, R.G., Rapid convergence to optimum solutions using a min-H strategy, AIAA Journal 5 (1969), 322–329.

    Article  ADS  Google Scholar 

  89. Grinev, V.B., Filippov, A.P., On optimal shapes of bars in stability problems (in Russian), Stroit. Mekh. Rasch. Sooruzh. 1975/2, 21–27.

    Google Scholar 

  90. Grinev, V.B., Filippov A.P., On optimal bars in stability problems under distributed loadings (in Russian), Stroit. Mekh. Rasch. Sooruzh. 1975/6, 23–27.

    Google Scholar 

  91. Grinev, V.B., Filippov, A.P., Optimal multispan bars and arches (in Russian), Stroit. Mekh. Rasch. Sooruzh. 1976/4, 17–21.

    Google Scholar 

  92. Gupta, V.K., Murthy, P.N., Strongest uniform-nonhomogeneous columns, J. Aeronaut. Soc. India., 32 (1980), 1/4, 45–49.

    Google Scholar 

  93. Hamada, M., Seguchi, Y., Tada,Y., Shape determination problems of structures by the inverse variational principle, (2nd Report, Buckling and Vibration Problems), Bull. JSME 23 (1980), 184, 1581–1588.

    Article  MathSciNet  Google Scholar 

  94. Hanaoka, M., Washizu, K., Optimum design of Beck’s column, Comp, and Struct. 11 (1980), 6, 473–480.

    Article  MathSciNet  MATH  Google Scholar 

  95. Hanna, S.Y., Michalopoulos, CD., Improved lower bounds for buckling loads and fundamental frequencies of beams, J. Appl. Mech. 46 (1979), 3, 696–698.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Haug, E.J., Optimization of distributed parameter structures with repeated eigenvalues, New Approaches to Nonlinear Problems in Dynamics, P.J. Holmes, (ed.), SIAM Publications, 1980.

    Google Scholar 

  97. Haug, E.J., Choi, K.K., Systematic occurrence of repeated eigenvalues in structural optimization, JOTA 38, (1982), 2, 251–274.

    Article  MathSciNet  MATH  Google Scholar 

  98. Hauger, W., Die Knicklasten elastischer Stäbe unter gleichmässig verteilten und linear veränderlichen, tangentialen Druckkräften, Ing. Archiv 35 (1966), 4, 221–229.

    Article  MATH  Google Scholar 

  99. Hauger, W., Stability of a compressible rod subjected to nonconservative forces, J. Appl. Mech. 42 (1975), 4, 887–888.

    Article  ADS  Google Scholar 

  100. Hornbuckle, J.C., Boykin, W.H. Jr., Equivalence of a constrained minimum weight and maximum column buckling load problem with solution, J. Appl. Mech. 45 (1978), 1, 159–164.

    Article  ADS  MATH  Google Scholar 

  101. Hu, K.K., Kirmser, Ph.G., A numerical solution of a nonlinear differential-integral equation for the optimal shape of the tallest column, Int. J. Eng. Sci. 18 (1980), 2, 333–339.

    Article  MATH  Google Scholar 

  102. Huang, N.C., Sheu, C.Y., Optimal design of an elastic column of thin-walled cross section, J. Appl. Mech. E35 (1968), 2, 285–288.

    Google Scholar 

  103. Illarionov, N.I. Analysis of some compressed step-wise bars and condition of their minimal weight allowing for earth rotation (in Russian), Kazan. Aviats. Inst., Kazan 1977, 1–13.

    Google Scholar 

  104. Ilyushin, A.A., Law of plane cross-sections in aerodynamics of large supersonic velocities (in Russian), Prikl. Mat. Mekh. 20 (1956), 6, 735–755.

    Google Scholar 

  105. Me, T., Yamada, G., Takahashi, L, Vibration and stability of a non-uniform Timoshenko beam subjected to a follower force, J. Sound Vibr. 70 (1980), 4, 503–512.

    Article  ADS  Google Scholar 

  106. Janiczek, R., Projektowanie pretow i belek wedlug kryterium minimum materialu, Zesz. nauk. Polit. Czestochowskiej, No. 2. 1963.

    Google Scholar 

  107. Kamat, M.P., Optimization of structural elements for stability and vibration, Ph. D. Thesis, Georgia Institute of Technology, Atlanta, 1972.

    Google Scholar 

  108. Kamenomostsky, A.I., Method of evaluation of minimal weight of a stringer under compression (in Russian), Sbornik “Dinamika, vynoslivost i nadezhnost aviats. konst.,” No. 2, Moskva 1978, 112–119.

    Google Scholar 

  109. Kamke, E., Differentialgleichungen, Losungensmethoden und Losungen, Akademische Verlagsgesellschaft, Geest and Portig, Leipzig, 1959.

    Google Scholar 

  110. Karihaloo, B.L., Optimal design of multi-purpose tie-column of solid construction, Int. J. Solids Structures 15 (1979), 2, 103–109.

    Article  MathSciNet  Google Scholar 

  111. Karihaloo, B.L., Optimal design of multi-purpose structures, JOTA 27(1979), 3, 449–461.

    Article  MathSciNet  MATH  Google Scholar 

  112. Karihaloo, B.L., Maximum stiffness beam-columns, Rozpr. Inz. 29 (1981), 4, 581–588.

    MATH  Google Scholar 

  113. Karihaloo, B.L., Niordson, F.I., Optimum design of vibrating beams under axial compression, Arch. Mech. Stos. 24 (1972), 5/6, 1029–1037.

    Google Scholar 

  114. Karihaloo, B.L., Niordson, F.I., Optimum design of vibrating contilevers, JOTA, 11 (1973), 6, 638–654.

    Article  MathSciNet  MATH  Google Scholar 

  115. Karihaloo, B.L., Parbery, R.D., The optimal design of beam-columns, Int. J. Solids Structures 15 (1979), 855–859.

    Article  MathSciNet  MATH  Google Scholar 

  116. Karihaloo, B.L., Parbery, R.D., Minimum weight design of multi-purpose beam columns of solid construction, Eng. Optim. 4 (1979), 1, 51–54.

    Article  Google Scholar 

  117. Karihaloo, B.L., Parbery, R.D., Optimal design of multi-purpose beam-columns, JOTA 27 (1979), 3, 439–448.

    Article  MathSciNet  MATH  Google Scholar 

  118. Karihaloo, B.L., Parbery, R.D., Optimal design of beam-columns subjected to concentrated moments, Eng. Optim. 5 (1980), 1, 59–66.

    Article  Google Scholar 

  119. Karihaloo, B.L., Wood G.L., Optimal design of multi-purpose sandwich tie-column, J. Eng. Mech. Div., Proc. ASCE 105 (1979), 3, 465–469.

    Google Scholar 

  120. Keller J.B., The shape of the strongest column, Arch. Rational Mech. Anal. 5 (1960), 4, 275–285.

    Google Scholar 

  121. Keller, J.B., Niordson F.I., The tallest column, J. Math, and Mech. 16 (1966), 5, 433–446.

    MathSciNet  MATH  Google Scholar 

  122. Khamutovsky, A.S., On optimal design of columns with stepwise variable cross-section (in Russian), Vopr. Stroit. Arkhit. 1977/7, 147–153.

    Google Scholar 

  123. Kirste, L., Druckstäbe geringsten Gewichts, Österr. Ing. Archiv 12 (1958), 1/2, 36–41.

    MATH  Google Scholar 

  124. Kiusalaas, J., Optimal design of structures with buckling constraints, Int. J. Solids Structures, 9 (1973), 7, 863–878.

    Article  MathSciNet  Google Scholar 

  125. Komkov, V., Haug, E.J., On the optimum shape of columns, in [0.60].

    Google Scholar 

  126. Kordas, Z., Zyczkowski, M., On the loss of stability of a rod under a super-tangential force, Arch. Mech. Stos. 15 (1963), 1, 7–31.

    MATH  Google Scholar 

  127. Kowalski, A.,Statecznosc pretow o skokowo zmiennym przekroju sciskanych sila sledzaca, Roxpr. Inz. 15 (1967), 2, 197–209.

    Google Scholar 

  128. Krylov, I.A., Chernousko, F.L., On the method of successive approximations to solve optimal control problems (in Russian), Zhurn. Vych. Mat. i Mat. Fiziki 2 (1962), 6.

    Google Scholar 

  129. Krylov, I.A., Chernousko, F.L., Algorithm of successive approximations for optimal control problems (in Russian), Zhurn. Vych. Mat. i Mat. Fiziki 12 (1972), 1.

    Google Scholar 

  130. Krzys, W., Optimum design of thin-walled closed cross-section columns, Bull. Acad. Sci., Serie Sci. Techn. 21 (1973), 9, 653–663.

    Google Scholar 

  131. Laasonen, P., Nurjahdustuen edullisimmasta poikkipinnan-valinnasta, Tekn. Aikakauslehti 38 (1948), 2, 49–52.

    Google Scholar 

  132. Lakhovich, L.S., Malinovsky, A.P., Design of minimal volume columns under parametric and vibrational loadings (in Russian), Issled. po Rasch. Sooruzh., Tomsk 1978, 70–79.

    Google Scholar 

  133. Lam, H.L., Haug, E.J., Choi, K.K., Optimal design of structures with constraints on eigenvalues, Materials Division, The University of Iowa, Tech. Report No. 79, Jan., 1981, 1–71.

    Google Scholar 

  134. Larichev, A.D., Problem of optimization of a clamped beam on elastic foundation (in Russian), Issled. po Stroit. Konstr., Moskva, 1982.

    Google Scholar 

  135. Lazarev, LB., On optimal bars of variable cross-section under axial force and self-weight (in Russian), Trudy Novosib. Inst. Inzh. Zhel.-Dor. Transp. 96 (1970), 127–135.

    Google Scholar 

  136. Leipholz, H., Anwendung des Galerkinschen Verfahrens auf nichtkonservative Stabilitätsprobleme des elastischen Stabes, ZAMP 13 (1962), 359–372.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  137. Leipholz, H., Die Knicklast des einseitig eingespannten Stabes mit gleichmassig verteilter, tangentialer Langsbelastung, ZAMP 13 (1962), 581–589.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  138. Leipholz, H., Über die Erweiterung des Hamiltonschen Prinzips auf lineare nichtkonservativen Probleme, Ing. Arch. 40 (1971), 1, 55–67.

    Article  MathSciNet  MATH  Google Scholar 

  139. Leipholz, H., On the calculation of flutter loads by means of variational technique, University of Waterloo, Paper No 105, Waterloo 1972.

    Google Scholar 

  140. Leipholz, H., Madan, O.P., On the solution of the stability problem of elastic rods subjected to uniformly distributed, tangential follower forces, Ing. Arch. 44 (1975), 347–357.

    Article  MathSciNet  MATH  Google Scholar 

  141. Madej, J., Szefer, G., Optymalne ksztaltowanie pretow sciskanych metoda maksimum Pontriagina, Czas. Techn. 82 (1978), 2, 1–6.

    Google Scholar 

  142. Mahrenholtz, O., Bogacz, R., On the shape of characteristic curves for optimal structures under non-conservative loads, Ing. Archiv 50 (1981), 2, 141–148.

    MATH  Google Scholar 

  143. Masur, E.F., Buckling, postbuckling and limit analysis of completely symmetric elastic structures, Int. J. Solids Structures 6 (1970), 587–604.

    Article  MATH  Google Scholar 

  144. Masur, E.F., Optimal placement of available sections in structural eigenvalue problems, JOTA 15 (1975), 1, 69–84.

    Article  MathSciNet  Google Scholar 

  145. Masur, E.F., Optimal design of symmetric structures against post-buckling collapse, Int. J. Solids Structures 14 (1978), 4, 319–326.

    Article  ADS  MATH  Google Scholar 

  146. Masur, E.F., Singular problems of optimal design, in [0.60].

    Google Scholar 

  147. Masur, E.F. Optimal structural design under multiple eigenvalue constraints, Int. J. Solids Structures 20 (1984), 3, 211–231.

    Article  MathSciNet  MATH  Google Scholar 

  148. Masur, E.F., Mroz, Z., On non-stationary optimality conditions in structural design, Int. J. Solids Structures 15 (1979), 6, 503–512.

    Article  MathSciNet  MATH  Google Scholar 

  149. Masur, E.F., Mroz, Z., Singular solutions in structural optimization problems, (IUTAM Symp. on Variational Methods in the Mech. of Solids, 1978), Pergamon Press, New York, 1980, 337–343.

    Google Scholar 

  150. Mauch, H.R., Feiton, L.P., Optimum design of columns supported by tension ties, J. Struct. Div., Proc. ASCE 93 (1967), 3, 201–220.

    Google Scholar 

  151. Mcintosh, S.C. Jr., Structural optimization via optimal control techniques: a review, Structural Optimization Symposium, L.A. Schmit, (ed.), AMD-Vol. 7, ASME, New York 1974, 49–64.

    Google Scholar 

  152. Mroz, Z., Gawecki, A., Post-yield behaviour of optimal plastic structures, in [0.36], 518–540.

    Google Scholar 

  153. Mroz, Z., Mironov, A., Optimal design for global mechanical constraints, Arch. Mech. Stos. 32 (1980), 4, 505–516.

    MathSciNet  MATH  Google Scholar 

  154. Murthy, K.N., Christiano, P., Design of least weight structures for prescribed buckling load, AIAA Journal 11 (1973), 12, 1773–1775.

    Article  ADS  Google Scholar 

  155. Murthy, K.N., Christiane P., Optimal design for prescribed buckling loads, J. Struct. Div. Proc. ASCE 100 (1974), 11, 2175–2190.

    Google Scholar 

  156. Nedyalkov, I., On the properties of solutions of a variational problem of elastic stability (in Bulgarian), Godishnik Vis. Tekhn. Uch. Zav., Pril. Mekh. 2 (1966), 1, 41–52.

    Google Scholar 

  157. Nedyalkov, I., On a column with maximal stability (in Bulgarian), Godishnik Vis. Tekhn. Uch. Zav, Pril. Mekh. 2 (1966), 1, 53–64.

    Google Scholar 

  158. Nedyalkov, I., Cheshankov, B., An approximate solution to the problem of a column with maximal stability (in Bulgarian), Godishnik Vis. Tekhn. Uch. Zav. Pril. Mekh. 1 (1965), 1, 61–72.

    Google Scholar 

  159. Nekrasowa, L. F., On a certain method of increase of stability of columns (in Russian), Sb. Nauchn. Tr. Perm. Pol. Inst. 207 (1977), 33–37.

    Google Scholar 

  160. Nemat-Nasser, S., Herrmann, G., Adjoint systems in nonconser-vative problems of elastic stability, AIAA Journal 4 (1966), 2221–2222.

    Article  ADS  Google Scholar 

  161. Nguyen, D., Tran, D.T., An optimal column (in Vietnamese), Khoa hoc ky thuat, No. 2, 1980, 23–27.

    Google Scholar 

  162. Nikolai, E.L., The problem of Lagrange on optimal shapes of columns (in Russian), Izv. Petersburg, Polit. Inst. 8 (1907), Trudy po mekhanike, Moskva 1955, 9–44.

    Google Scholar 

  163. Niordson, F.I., On the optimal design of a vibrating beam, Quart. Appl. Math. 23 (1965), 1, 47–53.

    MathSciNet  Google Scholar 

  164. Niordson, F., Olhoff, N., Variational methods in optimization of structures, DCAMM Report No. 161, July 1979, 1–22.

    Google Scholar 

  165. Niordons F.I., Pedersen, P., A review of optimal structural design Proc. 13th Int. Congr. Theor. Appl. Mech. Moskva 1972, Springer-Verlag 1973, 264–278.

    Google Scholar 

  166. O’Connell, R.F., Radovcich, N.A., Hassig, HJ., Structural optimization with flutter speed constraints using maximized step size, J. Aircraft 14 (1977), 1, 85–89.

    Article  Google Scholar 

  167. Odeh, F., Tadjbakhsh, I., The shape of the strongest column with a follower load, JOTA 15 (1975), 1, 103–118.

    Article  MathSciNet  MATH  Google Scholar 

  168. Olhoff, N., On singularities, local optima, and formation of stiffeners in optimal design of plates, in [0.36], 82–103.

    Google Scholar 

  169. Olhoff, N., Optimization of vibrating beams with respect to higher order natural frequencies, J. Struct. Mech. 4 (1976), 1, 87–122.

    Article  MathSciNet  Google Scholar 

  170. Olhoff, N., Optimal design against structural vibration and instability, Doct. Thesis, Technical University of Denmark, Lyngby 1978.

    Google Scholar 

  171. Olhoff, N., Optimal design with respect to structural eigenvalues, Proc. 15th Int. Congr. Theor. and Appl. Mech. (Toronto 1980), Prepr. Amsterdam 1980, 133–149.

    Google Scholar 

  172. Olhoff, N., Optimization of columns against buckling, in [0.60], 152–176.

    Google Scholar 

  173. Olhoff, N., Niordson, F.I., Some problems concerning singularities of optimal beams and columns, ZAMM, 59 (1979), 3, 16–26.

    MathSciNet  Google Scholar 

  174. Olhoff, N., Plaut, R.H., Bimodal optimization of vibrating shallow arches, Int. J. Solids Structures 19 (1983), 6, 553–570.

    Article  MATH  Google Scholar 

  175. Olhoff, N., Rasmussen, S.H., On single and bimodal optimum buckling loads of clamped columns, Int. J. Solids Structures 13 (1977), 7, 605–614.

    Article  MATH  Google Scholar 

  176. Olhoff, N., Taylor, J.E., Designing continuous columns for minimum total cost of material and interior supports, J. Struct. Mech. 6 (1978), 4, 367–382.

    Article  Google Scholar 

  177. Olhoff, N., Taylor, J.E., On structural optimization, J. Appl. Mech. 50 (1983), 4, 1139–1151.

    Article  MathSciNet  MATH  Google Scholar 

  178. Parbery, R.D., Karihaloo, B.L., Optimal design of multipurpose sandwich beam-columns, Rozpr. Inz. 27 (1979), 4, 575–583.

    MathSciNet  MATH  Google Scholar 

  179. Petrova, LS., Rikards, R.B., Optimization of a column with variable elastic modulus (in Russian), Mekh. Polimerov 1974/2, 277–284.

    Google Scholar 

  180. Pierson, B.L., A survey of optimal structural design under dynamic constraints, Int. J. Num. Meth. Engng. 4 (1972), 491–499.

    Article  Google Scholar 

  181. Plaut, R.H., On the optimal structural design for a nonconservative elastic stability problem, JOTA 7 (1971), 1, 52–60.

    Article  MathSciNet  MATH  Google Scholar 

  182. Plaut, R.H., The effects of various parameters on an aeroelastic optimization problem, JOTA, 10 (1972), 5, 321–330.

    Article  MathSciNet  MATH  Google Scholar 

  183. Plaut, R.H., Sufficient optimality conditions for some structural design problems, ZAMP, 23 (1972), 2, 257–264.

    Article  ADS  MATH  Google Scholar 

  184. Plaut R.H., Approximate solutions to some static and dynamic optimal structural design problems, Quart. Appl. Math. 30 (1973), 4, 535–539.

    MathSciNet  MATH  Google Scholar 

  185. Plaut, R.H., Elastic minimum-weight design for specified critical load, SIAM J. Appl. Math. 25 (1973), 3, 361–371.

    MATH  Google Scholar 

  186. Plaut, R.H., Optimal design for stability under dissipative, gyroscopic or circulatory loads, in [0.36], 168–180.

    Google Scholar 

  187. Popelar, C.H., Optimal design of beams against buckling: a potential energy approach, J. Struct. Mech. 4 (1976), 2, 181–196.

    Article  Google Scholar 

  188. Popelar, C.H., Optimal design of structures against buckling: a complementary energy approach, J. Struct. Mech. 5 (1977), 1, 45–66.

    Article  Google Scholar 

  189. Prager, W., Optimality criteria in structural design, Proc. Nat. Acad. Sci. USA 61 (1968), 3, 794–796.

    Article  MathSciNet  ADS  Google Scholar 

  190. Prager, S., Prager, W., A note on optimal design of columns, Int. J. Mech. Sci. 21 (1979), 4, 249–251.

    Article  Google Scholar 

  191. Prager, W., Shield R.T., Optimal design of multi-purpose structures, Int. J. Solids Structures 4 (1968), 4, 469–475.

    Article  Google Scholar 

  192. Prager, W., Taylor, J.E., Problems of optimal structural design, J. Appl. Mech. 35 (1968), 1, 102–106.

    MATH  Google Scholar 

  193. Prasad, S.N., Herrmann, G., The usefulness of adjoint systems in solving nonconservative stability problems of elastic continua, Int. J. Solids Structures 5 (1969), 727–735.

    Article  MATH  Google Scholar 

  194. Rammerstorfer, F.G., On the optimal distribution of the Young’s modulus of a vibrating, prestressed beam, J. Sound Vibr. 37 (1974), 1, 140–145.

    Article  ADS  Google Scholar 

  195. Rasmussen, S.H., On the optimal shape of an elastic-plastic column, J. Struct. Mech. 4 (1976), 3, 307–320.

    Article  MathSciNet  Google Scholar 

  196. Repin, S.I., Shape optimization of a bar on elastic foundation for multiple solutions (in Russian), Prikl. Mat., Tula 1979, 44–50.

    Google Scholar 

  197. Rikards, R.B., On optimal spatial reinforcement of a bar subject to buckling and vibrations (in Russian), Mekh. Kompoz. Mat. 16 (1980), 6, 1041–1046.

    Google Scholar 

  198. Rovany, G.I.N., Mroz, Z., Columns design: optimization of support conditions and segmentation, J. Struct. Mech. 5, (1977), 3, 279–290.

    Article  Google Scholar 

  199. Sakawa, Y., Ukai, H., Optimal shape of an elastic structure, Optimal Contr. Appl and Meth. 1 (1980), 373–385.

    MathSciNet  MATH  Google Scholar 

  200. Seyranian, A.P., Optimal design of a beam with natural frequency and buckling constraints (in Russian), Mekh. Tv. Tela, 11 (1976), 1, 147–152.

    Google Scholar 

  201. Seyranian, A.P., Weight optimization of a wing with static aeroelastic constraints (in Russian) Mekh. Tv. Tela 13 (1978), 4, 34–42.

    Google Scholar 

  202. Seyranian, A.P., Homogeneous functionals and structural optimization problems, Int. J. Solids Structures 15 (1979), 10, 749–759.

    Article  MATH  Google Scholar 

  203. Seyranian, A.P., Sensitivity analysis and optimization of aeroelastic stability, Int. J. Solids Structures 18 (1982), 9, 791–807.

    Article  MATH  Google Scholar 

  204. Seyranian, A.P., Optimization of structures subjected to aero-elastic instability phenomena, Arch. Mech. Stos. 34 (1982), 2, 133–146.

    MATH  Google Scholar 

  205. Seyranian, A.P., On a certain solution of a problem of Lagrange (in Russian), Dokl. AN SSSR 271 (1983), 3, 337–340.

    Google Scholar 

  206. Seyranian, A.P., Sharanyuk, A.V., Sensitivity and optimization of critical parameters in dynamic stability problems (in Russian) Mekh. Tv. Tela 18 (1983), 5, 174–183.

    Google Scholar 

  207. Simitses, G.J., Kamat, M.P., Smith, C.V. Jr., Strongest column by the finite element displacement method, AIAA Journal 11 (1973), 9, 1231–1232.

    Article  ADS  Google Scholar 

  208. Stroud, W.J., Automated structural design with aeroelastic constraints: a review and assessment of the state of the art, Structural Optimization Symposium, L.A. Schmit, (ed.), AMD-Vol. 7, ASME New York, 1974, 77–118.

    Google Scholar 

  209. Sundararajan, C, Optimization of a nonconservative elastic system with stability constraint, JOTA 16 (1975), 3/4, 355–378.

    Article  MathSciNet  MATH  Google Scholar 

  210. Swisterski, W., Wroblewski, A., Zyczkowski, M., Geometrically non-linear eccentrically compressed columns of uniform creep strength vs. optimal columns, Int. J. Non-Linear Mech. 18 (1983), 4, 287–296.

    Article  MATH  Google Scholar 

  211. Tadjbakhsh, I., Keller, J.B., Strongest columns and isoperimetric inequalities for eigenvalues, J. Appl. Mech. 29 (1962), 1, 159–164.

    MathSciNet  MATH  Google Scholar 

  212. Taylor, J.E., The strongest column: an energy approach, J. Appl. Mech. 34 (1967), 2, 486–487.

    Google Scholar 

  213. Taylor, J.E., Liu, C.Y., Optimal design of columns, AIAA, Journal 6 (1968), 8, 1497–1502.

    ADS  MATH  Google Scholar 

  214. Teschner, W., Minimum weight design for structural eigenvalue problems by optimal control theory, in [0.72], 424–429.

    Google Scholar 

  215. Thomas, C.R., Mass optimization of non-conservative cantilever beams with internal and external damping, J. Sound Vibr. 43 (1975), 3, 483–498.

    Article  ADS  MATH  Google Scholar 

  216. Thomas, C.R., Stability and mass optimization of nonconservative Euler beams with damping, J. Sound Vibr. 47 (1976), 3, 395–401.

    Article  ADS  MATH  Google Scholar 

  217. Trahair, N.S., Booker, J.R., Optimum elastic columns, Int. J. Mech. Sci. 12 (1970), 11, 973–983.

    Article  Google Scholar 

  218. Tsypinas, I.K., Application of the optimal control theory to synthesis of compressed bars (in Russian), Liet. Mech. Rinkinyus -Lit. Mekh. Sb. 1970/2, 17–32.

    Google Scholar 

  219. Turner, H.K., Optimal design of elastic structures for stability under multiple loads, Ph.D. Thesis, Virginia Polyt. Inst, and State Univ. Blacksburg, 1979.

    Google Scholar 

  220. Turner, H.K., Plaut, R.H., Optimal design for stability under multiple loads, J. Eng. Mech. Div. Proc. ASCE 106 (1980), 6, 1365–1382.

    Google Scholar 

  221. Turner, M.J., Optimization of structures to satisfy flutter requirements, AIAA Journal 7 (1969), 5, 945–951.

    Article  ADS  MATH  Google Scholar 

  222. Venkateswara, R.G., Narayanaswami, R., Optimum design of cantilever columns in the post-buckling region with constraint on axial load — an optimality criterion approach, Compt. and Struct. 12 (1980), 6, 843–848.

    Article  MATH  Google Scholar 

  223. Vepa, K., Generalization of an energetic optimality condition for conconservative systems, J. Struct. Mech. 3 (1973), 2, 229–257.

    Google Scholar 

  224. Vepa, K., On the existence of solutions of optimization problems with eigenvalue constraints, Quart. Appl. Math. 31 (1973/74), 10, 329–341.

    MathSciNet  MATH  Google Scholar 

  225. Vepa, K., Roorda, J., Optimality criteria for stability problems using Pontryagin’s maximum principle, Proc. 3rd Can. Congr. Appl. Mech., Calgary 1971, 365–366.

    Google Scholar 

  226. Weishaar, T.A., Plaut, R.H., Structural optimization under non-conservative loading, in [0.60], 843–864.

    Google Scholar 

  227. Wilson, J.F., Holloway, D.M., Biggers, S.B., Stability experiments on the strongest columns and circular arches, Exper. Mech. 11 (1971), 7, 303–308.

    Google Scholar 

  228. Wojdanowska, R., Optimal design of weakly curved compressed bars with Maxwell type creep effects, Arch. Mech. Stos. 30 (1978), 6, 845–851.

    Google Scholar 

  229. Wojdanowska, R., Zyczkowski, M., On optimal imperfect columns subjected to linear creep buckling, J. Appl. Mech. 47 (1980), 2, 438–439.

    Article  ADS  Google Scholar 

  230. Wroblewski, A., Parametrical optimization of eccentrically compressed bars according to the Kempner-Hoff creep buckling theory, 25th Polish Solid Mech. Conf., Jachranka 1984.

    Google Scholar 

  231. Yamabe, H., Optimization of Beck’s column (in Japanese), Bull. Nagoya Inst. Technol. 31 (1979), 255–260.

    Google Scholar 

  232. Yamakawa, H., Amari, M., Kunihiro, M., Kawashima, K., Optimum design of structures with regard to their vibrational characteristic, (4th report, beams subjected to axial forces), Bull. JSME 21 (1978), 154, 637–643.

    Article  Google Scholar 

  233. Zhukov, A.M., Rabotnov, Yu.N., Churikov, F.S., Experimental verification of some theories of creep (in Russian), Inzh. Sbornik 17 (1953), 163–170.

    Google Scholar 

  234. Ziegler, H., Arguments for and against Engesser’s buckling formulas, Ing. Archiv 52 (1982), 105–113.

    MATH  Google Scholar 

  235. Zyczkowski, M., Elastisch-plastische Knickung einiger nichtprismatischer Stabe, Bull. Acad. Pol., Ser. Sci. Techn. 3 (1955), 3, 129–134 (German summary).

    Google Scholar 

  236. Zyczkowski, M., Elastisch-plastische Knickung einiger nichtprismatischer Stabe, Rozpr. Inz. 2 (1954), 4, 231–289 (Polish full text).

    Google Scholar 

  237. Zyczkowski, M., W sprawie doboru optymalnego ksztaltu pretow osiowo sciskanych, Rozpr. Inz. 4, (1956), 4, 441–456.

    MathSciNet  Google Scholar 

  238. Zyczkowski, M., Optimal forms of thin-walled sections of beams with stability constraints taken into account, 10th Polish Solid Mechanics Conf. Kolobrzeg 1966.

    Google Scholar 

  239. Zyczkowski, M., Optimal design of elastic columns subject to the general conservative and non-conservative behaviour of loading, in [0.276], 225–242.

    Google Scholar 

  240. Zyczkowski, M., Recent results on optimal design in creep conditions, in [0.72], 444–449.

    Google Scholar 

  241. Zyczkowski, M., Gajewski, A., Optimal structural design in non-conservative problems of elastic stability, in [0.226], 295–301.

    Google Scholar 

  242. Zyczkowski, M., Wojdanowska-Zajac, R., Optimal structural design with respect to creep buckling, (Symp. IUTAM Creep in Struct., II, Gothenburg 1970) Springer, Berlin 1972, 371–387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gajewski, A., Zyczkowski, M. (1988). Elastic and Inelastic Columns. In: Optimal Structural Design under Stability Constraints. Mechanics of Elastic Stability, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2754-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2754-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7737-8

  • Online ISBN: 978-94-009-2754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics