Skip to main content

Two Non-Standard Paradigms for Computation: Analog Machines and Cellular Automata

  • Chapter
Performance Limits in Communication Theory and Practice

Part of the book series: NATO ASI Series ((NSSE,volume 142))

  • 255 Accesses

Abstract

Serious roadblocks have been encountered in several areas of computer application, for example in the solution of intractable (NP-complete) combinatorial problems, or in the simulation of fluid flow. In this talk we will explore two alternatives to the usual kinds of computers, and ask if they provide some hope of ultimately by-passing what appear to be essential difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Vergis, K. Steiglitz, B. Dickinson, “The Complexity of Analog Computation,” Mathematics and Computers in Simulation, in press.

    Google Scholar 

  2. D. Farmer, T. Toffoli, S. Wolfram (eds.), Cellular Automata, North-Holland Physics Publishing, Amsterdam, 1984.

    MATH  Google Scholar 

  3. K. Preston, Jr., M. J. B. Duff, Modern Cellular Automata, Theory and Applications, Plenum Press, 1984.

    MATH  Google Scholar 

  4. K. Steiglitz, R. Morita, “A Multi-Processor Cellular Automaton Chip,” Proc. 1985 IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, Florida, March 26–29, 1985.

    Google Scholar 

  5. J. K. Park, K. Steiglitz, W. P. Thurston, “Soliton-Like Behavior in Automata,” Physica D, in press.

    Google Scholar 

  6. F. L. Carter, “The Molecular Device Computer: Point of Departure for Large Scale Cellular Automata,” pp. 175–194 in D. Farmer, T. Toffoli, S. Wolfram (eds.), Cellular Automata, North-Holland Physics Publishing, Amsterdam, 1984.

    Google Scholar 

  7. A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N. J., 1975.

    MATH  Google Scholar 

  8. E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning Ways for your Mathematical Plays, Vol. 2: Games in Particular, (Chapter 25, “What is Life?”), Academic Press, New York, N. Y., 1982.

    Google Scholar 

  9. F. Nourai, R. S. Kashef, “A Universal Four-State Cellular Computer,” IEEE Trans. on Computers, vol. C-24, no. 8, pp. 766–776, August 1975.

    Article  Google Scholar 

  10. A. C. Scott, F. Y. F. Chu, D. W. McLaughlin, “The Soliton: A New Concept in Applied Science,” Proc. IEEE, vol. 61, no. 10, pp. 1443–1483, October 1973.

    Article  MathSciNet  Google Scholar 

  11. R. Hirota, K. Suzuki, “Theoretical and Experimental Studies of Lattice Solitons on Nonlinear Lumped Networks,” Proc. IEEE, vol. 61, no. 10, pp. 1483–1491, October 1973.

    Article  Google Scholar 

  12. A. Church, “An Unsolvable Problem of Elementary Number Theory,” Amer. J. Math., vol. 58, pp. 345–363, 1936. (Reprinted in [13].)

    Article  MathSciNet  Google Scholar 

  13. M. Davis, The Undecidable, Raven Press, Hewlett, NY, 1965.

    Google Scholar 

  14. R.P. Feynman, “Simulating physics with computers,” Internat. J. Theoret. Phys., vol. 21, pp. 467–488, 1982.

    Article  MathSciNet  Google Scholar 

  15. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co., San Francisco, CA, 1979.

    MATH  Google Scholar 

  16. D.S. Johnson, “The NP-completeness Column: an Ongoing Guide,” J. Algorithms, vol.4, pp. 87–100, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Jackson, Analog Computation, McGraw-Hill, New York, NY, 1960.

    MATH  Google Scholar 

  18. W. Karplus and W. Soroka, Analog Methods, 2nd. ed., McGraw-Hill, New York, NY, 1959.

    MATH  Google Scholar 

  19. D. Plaisted, “Some Polynomial and Integer Divisibility Problems are NP-Hard,” Proc. 17th Ann. Symp. on Foundations of Computer Science, pp. 264–267, 1976.

    Google Scholar 

  20. A. M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” Proc. London Math. Soc., Series 2, vol. 42, pp. 230–265, 1936–1937;

    Article  Google Scholar 

  21. A. M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” Proc. London Math. Soc., Series 2, vol. 43, pp. 544–546, 1937. (Reprinted in [13].)

    Article  Google Scholar 

  22. K. Steiglitz, I. Kamal, A. Watson, “Embedding Computation in One-Dimensional Automata by Phase Coding Solitons,” Tech. Rept. No. 15, Dept. of Computer Science, Princeton University, Princeton NJ 08544, Nov. 1985.

    Google Scholar 

  23. N. Islam, K. Steiglitz, “Phase Shifts in Lattice Solitons, and Applications to Embedded Computation,” in preparation.

    Google Scholar 

  24. A. K. Dewdney, “On the Spaghetti Computer and other Analog Gadgets for Problem Solving,” in the Computer Recreations Column, Scientific American, vol. 250, no. 6, pp. 19–26, June 1984.

    Article  Google Scholar 

  25. A. K. Dewdney, “On the Spaghetti Computer and other Analog Gadgets for Problem Solving,” in the Computer Recreations Column, Scientific American, vol. 250, no. 6, pp. 19–26, Sept. 1984, June 1985, and May 1985, the last also containing a discussion of one-dimensional computers.

    Article  Google Scholar 

  26. J. B. Salem, S. Wolfram, “Thermodynamics and Hydrodynamics with Cellular Automata,” unpublished manuscript, November 1985.

    Google Scholar 

  27. U. Frisch, B. Hasslacher, Y. Pomeau, “A Lattice Gas Automaton for the Navier Stokes Equation,” Preprint LA-UR-85–3503, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, 1985.

    Google Scholar 

  28. S. Wolfram, “Cellular Automaton Fluids 1: Basic Theory,” preliminary manuscript, Institute for Advanced Study, Princeton, NJ 08540, 1986.

    Google Scholar 

  29. S. R. Sternberg, “Computer Architectures Specialized for Mathematical Morphology,” pp. 169–176 in Algorithmic ally Specialized Parallel Computers, L. Snyder, L. H. Jamieson, D. B. Gannon, H. J. Siegel (eds.), Academic Press, 1985.

    Google Scholar 

  30. S. Kugelmass, K. Steiglitz, in progress.

    Google Scholar 

  31. C. H. Goldberg, “Parity Filter Automata,” in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Steiglitz, K. (1988). Two Non-Standard Paradigms for Computation: Analog Machines and Cellular Automata. In: Skwirzynski, J.K. (eds) Performance Limits in Communication Theory and Practice. NATO ASI Series, vol 142. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2794-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2794-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7757-6

  • Online ISBN: 978-94-009-2794-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics