Skip to main content

Can Singularities and Multidimensional Spaces Influence the Evolution of Quantum Mechanical Systems?

  • Chapter
The Nature of Quantum Paradoxes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 28))

  • 231 Accesses

Abstract

Some results of quantum gravity suggest possible violations of quantum mechanics in the form of transitions from pure to mixed states. A “quantum violating evolution equation” put forward by Ellis, Hagelin, Nanopoulos and Srednicki is used in the case of rotationally invariant density matrices describing a system of two spin-½ particles. It is shown that the equation may account for the transition from a pure singlet state to a mixture of maximal entropy discussed by Baracca, Bohm, Hiley and Stuart in 1975 in connection with Bohm’s version of the EPR experiment. It is argued that similar effects on the evolution of microscopic systems could also arise as a consequence of extra spatial dimensions, such as those introduced in multidimensional unified theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D14 ,14 (1976).

    Article  MathSciNet  Google Scholar 

  2. S.W. Hawking, “The Unpredictability of quantum gravity”,1. Commun. Math. Phys. 87, 395 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Ellis, J.J. Hagelin, D.V. Nanopoulos, and M. Srednicki, Nuol. Phys. B244 125 (1984).

    Google Scholar 

  4. S. Bergia, F. Cannata, and V. Monzoni, Found. Phys. 15 ,145 (1985) .

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Banks, L. Susskind, and M.E. Peskin, Nucl. Phys. B244 ,125 (1984).

    ADS  MathSciNet  Google Scholar 

  6. V. Gorini, A. Frigerio, M. Verri, and A. Kossakowski, E.C.G. Sudarshan, Rep. Math. Phys. 13 ,149 (1978).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. S. Bergia, F. Cannata, B. Giorgini, and V. Zamboni,Lett. Nuovo Cimento, 43 ,113 (1985).

    Article  MathSciNet  Google Scholar 

  8. S. Bergia, and B. Giorgini, in progress; based on an adaptation of the analysis carried out in G.G. Emch and G.L. Sewell, Journ. Math. Phys. 9 ,946 (1968).

    Article  Google Scholar 

  9. A. Baracca, D.J. Bohm, B.J. Hiley, and A.E.G. Stuart, Nuovo Cimento 28B ,453 (1975).

    ADS  MathSciNet  Google Scholar 

  10. R.M.Wald, Phys. Rev. D21 ,2742 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  11. R.M. Wald, “Black holes, thermodynamics, and time reversibility”, in Quantum Gravity 2 ,C.J. Isham, R. Penrose, and D.W. Sciama, eds. (Oxford University Press, Oxford, 1981);

    Google Scholar 

  12. D.N. Page, Gen. Rel. Grav. 14 , 299 (1982)

    Article  ADS  Google Scholar 

  13. F.J. Tipler, Gen. Rel. Grav. 15 ,1139 (1983); and references therein.

    Article  ADS  MathSciNet  Google Scholar 

  14. A.R. Wilson, J. Lowe, and D.K. Butt,J. Phys. 42 ,613 (1976)

    ADS  Google Scholar 

  15. D.J. Bohm, and B.J. Hiley, Nuovo Cimento 35B ,137 (1976) .

    ADS  Google Scholar 

  16. S. Bergia, and F. Cannata. “Non linear models for quantum mechanical measurements”, presented at the Conference “Microphysical Reality and Quantum Formalism”, Urbino, Sep. 25-Oct. 3, 1985.

    Google Scholar 

  17. T. Kaluza, Sitzungsber. preuss. Akad. Wiss. ,p. 966 (1921).

    Google Scholar 

  18. C. Hoenselaers, English translation of Ref.13, in Unified Field Theories of More than Four Dimensions ,(Proceedings of the International School of Cosmology and Gravitation, Erice, 1982), V. De Sabbata and E. Schmutzer, eds. (World Scientific, Singapore, 1983).

    Google Scholar 

  19. O. Klein, Z. Phys. 37 , 895 (1926).

    Article  ADS  Google Scholar 

  20. C. Hoenselaers. English translation of Ref.15, the Erice Proceedings of Ref.14.

    Google Scholar 

  21. See, in particular, E. witten, Nuol. Phys. B186, 412 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Bergia, C.A. Orzalesi, and G. Venturi, Phys. Lett. 123B ,205 (1983).

    ADS  MathSciNet  Google Scholar 

  23. F. Cannata, private communication.

    Google Scholar 

  24. M. Kargh, Am. J. Phys. 52, 1024 (1984).

    Article  ADS  Google Scholar 

  25. See, e.g., A. Pais, “SuFtle is the Lord: The science and life of Albert Einstein” ,(Oxford University Press, Oxford, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bergia, S. (1988). Can Singularities and Multidimensional Spaces Influence the Evolution of Quantum Mechanical Systems?. In: Tarozzi, G., van der Merwe, A. (eds) The Nature of Quantum Paradoxes. Fundamental Theories of Physics, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2947-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2947-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7826-9

  • Online ISBN: 978-94-009-2947-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics