Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 30))

  • 291 Accesses

Abstract

Nanosecond matter as discussed here is of two kinds. One is superlight hydrogen. Depending on the temperature and pressure, it is a gas, liquid or solid, composed of superlight hydrogen molecules or polyelectrons, e +2 e 2 . The other is µ-mesic matter, built of µ-mesic atoms: atoms in which not merely one electron but all the electrons have been replaced by µ-mesons (Gresham’s law: bad electrons drive out good ones!).

Preparation for publication assisted by Center for Theoretical Physics and by NSF Grant PHY 8503890

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice, R.O. and Teller, E. The Structure of Matter. Wiley, New York, 1949.

    MATH  Google Scholar 

  2. Wheeler, J.A., “Some consequences of the electromagnetic interaction between µ-mesons and nuclei”, Rev. Mod. Phys. 21,133–143 (1949).

    Article  ADS  Google Scholar 

  3. This paper was preceded by Wheeler, J.A., “Mechanism of capture of slow mesons”, Phys. Rev. 71, 220–221 (1947)

    Article  ADS  Google Scholar 

  4. Fermi, E. and Teller, E., “The capture of negative mesotrons in matter”, Phys. Rev. 72, 399–408 (1947);

    Article  ADS  Google Scholar 

  5. Tiomno, J. and Wheeler, J.A., “Charge exchange reaction of the µ-meson with the nucleus”, Rev. Mod. Phys. 21, 153–165 (1949)

    Article  ADS  MATH  Google Scholar 

  6. Wheeler, J.A. “Mu meson as nuclear probe particle”, Phys. Rev. 92, 812–816 (1953).

    Article  ADS  Google Scholar 

  7. Shearer, J.W. and Deutsch, M., “The lifetime of positrons in matter”, Phys. Rev. 76, 462 (1949);

    Google Scholar 

  8. see also Deutsch, M. “Annihilation of positrons”, Prog. Nuc. Phys. 3, 131 (1953)

    Google Scholar 

  9. Deutsch, M. and Berko, S. “Positron annihilation and positronium”, pp. 1583–1598 in K. Siegbahn, ed., Alpha-, Beta- and Gamma-Ray Spectroscopy, vol. 2, North Holland, Amsterdam, (1965)

    Google Scholar 

  10. A.T. Stewart and L.O. Roellig, eds. Positron Annihilation, Academic Press, New York (1967)

    Google Scholar 

  11. Rich, A. “Recent experimental results in positronium research”, Rev. Mod. Phys. 53, 127–165 (1981).

    Article  ADS  Google Scholar 

  12. Wheeler, J.A., “Polyelectrons”, Annals New York Acad. Sci. 48, 219–238 (1946).

    Article  ADS  Google Scholar 

  13. Landau, L., unpublished work, cited by A. Alichanian and T. Asatiani, J. Phys. U.S.S.R. 9, 56 (1945).

    Google Scholar 

  14. Ruark, A.E., “Positronium”, Phys. Rev. 68, 278 (1945).

    Article  ADS  Google Scholar 

  15. Hylleraas, E.A. “Electron affinity of positronium”, Phys. Rev. 71, 491–493 (1947).

    Article  ADS  MATH  Google Scholar 

  16. Ho, Y.K. “Positron annihilation in the positronium negative ion”, J. Phys. B: At. and Mol. Phys. 16,1503–1509 (1983). With a 125 term polynomial Ho calculates for e +2 e 2 a binding of (0.5 + 0.02400979) Ry and a decay rate of 2.098/ns but in a note added in proof cites unpublished calculations of A.K. Bhatia and R.J. Drachman with a 220 term polynomial giving a binding of 0.5240101127Ry and a decay rate of 2.0928/ns.

    Article  ADS  Google Scholar 

  17. Mills, A., Jr., “Observation of the positronium negative ion”, Phys. Rev. Lett. 46, 717–720 (1981)

    Article  ADS  Google Scholar 

  18. Mills, A., Jr., “Measurement of the decay rate of the positronium negative ion”, Phys. Rev. Lett. 50, 671–674 (1983). The decay rate reported in the second paper is 2.09±0.09/ns.

    Article  ADS  Google Scholar 

  19. Mills, A., Jr., Kind personal communication of 16 June 1983.

    Google Scholar 

  20. Hylleraas, E.A. and Ore, A., “Binding energy of the positronium molecule”,Phys. Rev. 71, 493–496 (1947).

    Article  ADS  MATH  Google Scholar 

  21. Ore, A., “Structure of the quadrielectron”, Phys. Rev. 71, 913–914 (1947).

    Article  ADS  MATH  Google Scholar 

  22. Brinkman, W.F., Rice, T.M., and Bell, R., “The excitonic molecule”, Phys. Rev. B8, 1570–1580 (1973).

    ADS  Google Scholar 

  23. Moskalik, P. and Sikora, M., “Pair production instabilities as a source of X-ray flares from accreting black holes”, Nature 319, 649–652 (1986);

    Article  ADS  Google Scholar 

  24. Begelman, M.C., Sikora, M., and Rees, M.J., “Thermal and dynamical effects of pair production on two-temperature accretion flows”, Astrophys. J. 313, 689–698 (1987); and references cited therein.

    Article  ADS  Google Scholar 

  25. Urey, H.C., “Deuterium and tritium”, Encyclopedia Brittanica 7, 279–280 (1956).

    Google Scholar 

  26. Tilley, D.R. and Tilley, J., Superfluidity and Superconductixnty, Wiley, New York, 1974, p. 3.

    Google Scholar 

  27. Herzfeld, K.F., “On atomic properties which make an element a metal”, Phys. Rev. 29, 701–705 (1927).

    Article  ADS  Google Scholar 

  28. Wigner, E. and Huntington, H.B., “On the possibility of a metallic modification of hydrogen”, J. Chem. Phys. 3, 764–770 (1935).

    Article  ADS  Google Scholar 

  29. Hawke, P.S., Burgess, T.J., Duerre, D.E., Huebel, J.G., Keeler, R.N., Klapper, H., and Wallace, W.C., “Observation of electric conductivity of isentropically compressed hydrogen at megabar pressures”, Phys. Rev. Lett. 41, 994–994 (1978) (Hydrogen conducting at 2Mbar). In contrast, the pressure at the center of the earth is around 3.5Mbar; factors of density increase of the order of 2 are obtained for some substances at 8Mbar, and of the order of 3 at 30Mbar (nuclear explosions).

    Article  ADS  Google Scholar 

  30. See L.V. Altshuler et al., Sov. Phys. JETP 45, 167–171 (1977) for the most extreme pressures at which any measurements had been made up to that time, 50Mbar.

    ADS  Google Scholar 

  31. J.A. Morgan, [Journal of] High Temperature-High Pressure 6, 195–201 (1974) for the 2-fold density increase achieved with the diamond anvil cell

    Google Scholar 

  32. for compression by a nuclear explosion, C.E. Ragan, III, et al., J. Appl. Phys. 48, 2860–2870 (1977) (30Mbar range)

    Article  ADS  Google Scholar 

  33. H.K. Mao et al., J. Appl. Phys. 49, 3276–3283 (1978). I am indebted to C.E. Ragan, III for these references to the literature.

    Article  ADS  Google Scholar 

  34. Chang, W.Y., “A cloud chamber study of the absorption of µ-mesons by thin Pb, Fe and Al foils”, Rev. Mod. Phys. 21, 166–180 (1949).

    Article  ADS  Google Scholar 

  35. Fitch, V.L. and Rainwater, J., Phys. Rev. 92, 789 (1953).

    Article  ADS  Google Scholar 

  36. Wu, C.S. and Wilets, “Muonic atoms and nuclear structure”, Annual Rev. Nuel. Sci. 19, 527–606 (1969).

    Article  ADS  Google Scholar 

  37. Borie, E. and Rinker, G.A., “The energy levels of muonic atoms”, Rev. Mod. Phys. 54, 67–118 (1982).

    Article  ADS  Google Scholar 

  38. Brown, G.E., “The fate of massive stars: Collapse, bounce and shock formation”, pp. 13–34 In: Supernovae: A Survey of Current Research, M.J. Rees and R.J. Stoneham, eds., Reidel, Dordrecht, 1982.

    Google Scholar 

  39. Bethe, H.A., “Supernova shocks and neutrino diffusion”, pp. 35–52 In: Supernovae: A Survey of Current Research, M.J. Rees and R.J. Stoneham, eds., Reidel, Dordrecht, 1982;

    Google Scholar 

  40. Van Riper, K.A. and Lattimer, J.M., “Stellar core collapse: I. Infall epoch”, Astrophys. J. 249, 270–289 (1981).

    Article  ADS  Google Scholar 

  41. Hirata, K. et al., Phys. Rev. Letters 58, 1490 (1987)

    Article  ADS  Google Scholar 

  42. Bionta, R.M. et al., Phys. Rev. Letters 58, 1494 (1987) independently report observation of a burst of neutrinos, with energies of the stated order, in coincidence with supernova 1987A in the Large Magellanic Cloud.

    Article  ADS  Google Scholar 

  43. Anderson, H.L., Hargrove, C.K., Hincks, E.P., Mndrew, J.D., Mee, R.J., Barton, R.D., and Kessler, D., “Precise measurement of the muonic x-rays in the lead isotopes”, Phys. Rev. 187, 1565–1596 (1969). The energy levels of a single µ-meson appear in Table 10 on p. 1578.

    Article  ADS  Google Scholar 

  44. Fricke, B. and Soff, G., “Dirac-Fock-Slater calculations from the element Z = 100, Fermium, to Z = 173”, Atomic Data and Nuclear Data Tables 19, 83–88 (1977).

    Article  ADS  Google Scholar 

  45. Cowan, R.D., The Theory of Atomic Structure and Spectra, University of California Press, Berkeley and Los Angeles, 1981.

    Google Scholar 

  46. Latter, R., “Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential”, Phys. Rev. 99, 510–519 (1955).

    Article  ADS  Google Scholar 

  47. Fano, U. and Fano, L., Physics of Atoms and Molecules: An Introduction to the Study of Matter, University of Chicago Press, 1972.

    Google Scholar 

  48. Hodgman, C.D., ed.,Handbook of Chemistry and Physics, 37th ed., Chemical Rubber Publishing Co., Cleveland, Ohio, 1956.

    Google Scholar 

  49. Sissler, H.H., Electronic Structure, Properties, and the Periodic Law, 2nd ed., Van Nostrand, New York, 1973.

    Google Scholar 

  50. Wheeler, J.A., “Meson-induced fission”, Phys. Rev. 73, 1252 (1947).

    Google Scholar 

  51. Gombás, P., Die Statistische Theorie des Atoms and ihre Anwendungen, Springer, Vienna, 1949, p. 60.

    Google Scholar 

  52. Martin, P.C., Course in Statistical Mechanics, Harvard University, 1969–1970, as kindly reported to the writer by J. Swift.

    Google Scholar 

  53. Canahan, N.F. and Starling, K.E., J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  54. J.P. Hansen and LR. Monald,Theory of Simple Liquids, Academic, New York, 1976, pp. 88–89;

    Google Scholar 

  55. A. Baram and M. Luban, J. Phys. C 12, L 659 (1979)

    Article  ADS  Google Scholar 

  56. S. Labik and A. Malijewsky, Mol. Phys. 42, 739 (1981);

    Article  ADS  Google Scholar 

  57. V.C. Aquilera-Navarro, M. Fortes, M. de Llano and A. Piastino, J. Chem. Phys. 76, 749 (1982)

    Article  ADS  Google Scholar 

  58. V.N. Ryzhov and E.E. Taveeva, Theor. Math. Phys. 48, 835 (1981). I am indebted to Joel L. Lebowitz and David Maowan for the information in the text and these references.

    Article  Google Scholar 

  59. Kilpatrick, J.E. and Kilpatrick, M.E., “Discrete energy levels associated with Lennard-Jones potentials,”, J. Chem. Phys. 19, 930–933 (1951).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wheeler, J.A. (1988). Nanosecond Matter. In: Mark, H., Wood, L. (eds) Energy in Physics, War and Peace. Fundamental Theories of Physics, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3031-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3031-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7862-7

  • Online ISBN: 978-94-009-3031-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics