Skip to main content

The Use of Spline Functions in Calculating the Natural Frequencies of Anisotropic Rectangular Laminates

  • Chapter
Composite Structures 4

Abstract

A preliminary study is made of the effectiveness of cubic spline functions when used in potential-energy-based analyses of symmetrically-laminated, composite rectangular plates having orthotropic or anisotropic material properties. The problem under consideration is the determination of laminate natural frequencies and a first-order shear deformation plate theory is used. The analysis procedures employed are the Rayleigh-Ritz and finite strip methods. The numerical results presented show that the use of cubic spline functions is efficient for moderately-thick laminates and is particularly promising for anisotropic material However, for truly thin laminates the efficiency is reduced considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. appl. Mech., 18 (1951).

    Google Scholar 

  2. Mindlin, R. D., Influence of rotary inertia and shear on flexural motions of isotropic elastic plastics, J. appl. Mech., 18 (1951).

    Google Scholar 

  3. Yang, PC. Norris, C. H. and Stavsky, Y., Elastic wave propagation in heterogeneous plates, Int. J. Solids Struct., 2 (1966), 665–684.

    Article  Google Scholar 

  4. Whitney, J. M. and Pagano, N. J., Shear deformation in heterogeneous anisotropic plates, J. appl. Mech., 37 (1970), 1031–1036.

    Article  Google Scholar 

  5. Dawe, D. J., Finite strip models for vibration of Mindlin plates, J. Sound Vib., 59 (1978), 441–452.

    Article  Google Scholar 

  6. Dawe, D. J. and Roufaeil, O. L., Rayleigh-Ritz vibration analysis of Mindlin plates, J. Sound Vib.. 69 (1980), 345–359.

    Article  Google Scholar 

  7. Roufaeil, O. L. and Dawe, D. J., Vibration analysis of rectangular Mindlin plates by the finite strip method, Computers and Structures, 12 (1980), 833–842.

    Article  Google Scholar 

  8. Roufaeil, O. L. and Dawe, D. J., Rayleigh-Ritz vibration analysis of rectangular Mindlin plates subjected to membrane stresses, J. Sound Vib., 85 (1982), 263–275.

    Article  Google Scholar 

  9. Dawe, D. J. and Craig, T. J., The influence of shear deformation on the natural frequencies of laminated rectangular plates, in: Composite Structures—3, ( I. H. Marshall ed.). London, Elsevier Applied Science, 1985, pp. 660–676.

    Google Scholar 

  10. Craig, T. J. and Dawe, D. J., Flexural vibration of symmetrically-laminated composite, rectangular plates, including transverse shear effects, Int. J. Solids Struct., 22 (1986), 155 169.

    Google Scholar 

  11. Dawe, D. J. and Craig, T. J., The vibration and stability of symmetrically- laminated composite rectangular plates subjected to in-plane stresses, Composite Structures, 5 (1986), 281–307.

    Article  Google Scholar 

  12. Ahlberg, J. H., Nilson, E. M. and Walsh, J. L. The Theory of Splines and their Applications, New York, Academic Press, 1967.

    Google Scholar 

  13. Prenter, P. M., Splines and Variational Methods, New York, Wiley, 1975.

    Google Scholar 

  14. Antes, H., Bicubic fundamental splines in plate bending, Int. J. Num. Meth. Engng, 8 (1974).

    Google Scholar 

  15. Mizusawa, T., Kajita, T. and Naruoka, M., Vibration of stiffened skew plates by using B-spline functions, Computers and Structures, 10 (1979), 821–826.

    Article  Google Scholar 

  16. Cheung, Y. K. and Fan, S. C., Static analysis of right box girder bridges by spline finite strip method, Proc. Inst. Civ. Engrs, 75 (Part 2) (1983), 311–323.

    Google Scholar 

  17. Chow, T. S., On the propagation of flexural waves in an orthotropic laminated plate and its response to an impulsive load, J. Comp. Mater., 5 (1971), 306–319.

    Article  CAS  Google Scholar 

  18. Whitney, J. M., Shear correction factors for orthotropic laminates under static load, J. appl. Meek, 40 (1973), 302–304.

    Article  Google Scholar 

  19. Ashton, J. E. and Whitney, J. M., Theory of Laminated Plates (Section 5. 8 ), Stamford, Conn., Technomic Publishing Co. Inc., 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Wang, S., Dawe, D.J. (1987). The Use of Spline Functions in Calculating the Natural Frequencies of Anisotropic Rectangular Laminates. In: Marshall, I.H. (eds) Composite Structures 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3455-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3455-9_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8047-7

  • Online ISBN: 978-94-009-3455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics