Skip to main content

Determination of stress intensity factors

  • Chapter
Elementary engineering fracture mechanics
  • 1984 Accesses

Abstract

The application of fracture mechanics principles bears largely upon the stress intensity factor. An essential part of the solution of a fracture problem in linear elastic fracture mechanics is the establishment of the stress intensity factor for the crack problem under consideration. Since the introduction of fracture mechanics much effort has been put into the derivation of stress intensity factors, and a variety of methods have been developed to approach the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cartwright, D. J., Methods of determining stress intensity factors, R.A.E. TR 73031 (1973).

    Google Scholar 

  2. Westergaard, H. M., Bearing pressures and cracks, J. Appl. Mech., 61 (1939) pp. A49–53.

    Google Scholar 

  3. Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity, (1938), English translation, Noordhoff (1953).

    Google Scholar 

  4. Sih, G. C., Application of Muskhelishvili’s method to fracture mechanics, Trans. Chin. Ass. Adv. Studies, (1962).

    Google Scholar 

  5. Erdogan, F., On the stress distribution in plates with collinear cuts couler arbitrary loads, Proc. 4th U.S. Nat. Congress Appl. Mech., (1962).

    Google Scholar 

  6. Bilby, B. A., Cottrell, A. H., Smith, E. and Swinden, K. H., Plastic yielding from sharp notches, Proc. Roy. Soc. A 279, (1964) pp. 1–9.

    ADS  Google Scholar 

  7. Bilby, B. A. and Eshelby, J. D., Dislocations and the theory of fracture, Fracture I, pp. 99–182, Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  8. Bowie, O. L., Analysis of an infinite plate containing radial cracks originating at the boundary of an internal circular hole, J. Math. and Phys., 25 (1956) pp. 60–71.

    MathSciNet  Google Scholar 

  9. Bowie, O. L. and Neal, D. M., Modified mapping-collocation technique for accurate calculation of stress intensity factors, Int. J. Fract. Mech., 6 (1970) pp. 199–206.

    Google Scholar 

  10. Gross, B., Srawley, J. E. and Brown, W. F., Stress intensity factors for a single-edge-notch tension specimen by boundary collocation of a stress function, NASA TN D-2395 (1964).

    Google Scholar 

  11. Srawley, J. E. and Gross, B., Stress intensity factors for crack-line loaded edge-crack specimens, NASA TN D-3820 (1967).

    Google Scholar 

  12. Isida, M., On the determination of stress intensity factors for some common structural problems, Eng. Fract. Mech., 2 (1970) pp. 61–79.

    Article  Google Scholar 

  13. Zienkiewicz, O. C., The finite element method in engineering science, McGraw-Hill (1971).

    Google Scholar 

  14. Watwood Jr., V. B., The finite element method for prediction of crack behaviour, Nuclear Eng. and Design, 11 (1969) pp. 323–332.

    Article  Google Scholar 

  15. Chan, S. K., Tuba, I. S. and Wilson, W. K., On the finite element method in linear fracture mechanics, Eng. Fract. Mech., 2 (1970) pp. 1–17.

    Article  Google Scholar 

  16. Byskov, E., The calculation of stress intensity factors using the finite element method with cracked elements, Int. J. Fract. Mech., 6 (1970) pp. 159–167.

    Google Scholar 

  17. Tracey, D. M., Finite elements for determination of crack tip elastic stress intensity factors, Eng. Fract. Mech., 3 (1971) pp. 255–265.

    Article  Google Scholar 

  18. Walsh, P. F., The computation of stress intensity factors by a special finite element technique, Int. J. Solids and Struct., 7 (1971) pp. 1333–1342.

    Article  MATH  Google Scholar 

  19. Mowbray, D. F., A note on the finite element method in linear fracture mechanics, Eng. Fract. Mech., 2 (1970) pp. 173–176.

    Article  Google Scholar 

  20. Swanson, S. R., Finite element solutions for a cracked two-layered elastic cylinder, Eng. Fract. Mech., 3 (1971) pp. 283–289.

    Article  Google Scholar 

  21. Isida, M., On the tension of a strip with a central elliptical hole, Trans. Jap. Soc. Mech. Eng., 21 (1955).

    Google Scholar 

  22. Hayes, D. J., Some applications of elastic-plastic analysis to fracture mechanics, Ph. D. Thesis, Imperial College (1970).

    Google Scholar 

  23. Marcal, P. V. and King, I. P., Elastic-plastic analysis of two-dimensional stress systems by the finite element method, Int. J. Mech. Sciences, 9 (1967) pp. 143–154.

    Article  Google Scholar 

  24. Levy, N., Marcal, P. V., Ostergren, W. J. and Rice, J. R., Small scale yielding near a crack in plane strain. A finite element analysis, Int. J. Fract. Mech., 7 (1971) pp. 143–156.

    Google Scholar 

  25. De Koning, A. U., Results of calculations with TRIM 6 and TRIAX 6 elastic-plastic elements, Nat. Aerospace Inst. Amsterdam Rept. MP 73010 (1973).

    Google Scholar 

  26. Smith, D. G. and Smith, C. W., A photoelastic evaluation of the influence of closure and other effects upon the local, stresses in cracked plates, Int. J. Fract. Mech., 6 (1970) pp. 305–318.

    Google Scholar 

  27. Gerberich, W. W., Stress distribution around a slowly growing crack determined by photoelastic coating method, Proc. SESA, 19 (1962) pp. 359–365.

    Google Scholar 

  28. Kobayashi, A. S., Photoelastic studies of fracture, Fracture III, pp. 311–369, Liebowitz, Ed., Academic Press (1969).

    Google Scholar 

  29. Dixon, J. R., Stress distribution around edge slits in tension, Nat. Eng. Lab., Glasgow, Rept 13 (1961).

    Google Scholar 

  30. Smith, D. G. and Smith, C. W., Photoelastic determination of mixed mode stress intensity factors, Eng. Fract. Mech., 4 (1972) pp. 357–366.

    Article  Google Scholar 

  31. Monthulet, A., Bhandari, S. K. and Riviere, C., Méthodes pratiques de détermination du facteur d’intensité des contraintes pour la propagation des fissures, La Recherche Aérospatiale, (1971) pp. 297–303.

    Google Scholar 

  32. Barrois, W., Manual on fatigue of structures, AGARD-Man-8-70 (1970).

    Google Scholar 

  33. Bhandari, S. K., Étude expérimentale du facteur d’intensité des contraintes au voisinage de la pointe d’une fissure de fatigue centrale dans une tôle mince au moyen des mesures extensométriques, Thèse, École Nat. Supérieure de l’Aeronautique, Paris (1969).

    Google Scholar 

  34. Sommer, E., An optical method for determining the crack tip stress intensity factor, Eng. Fracture Mech., 1 (1970) pp. 705–718.

    Article  Google Scholar 

  35. Gallagher, J. P., Experimentally determined stress intensity factors for several contoured DCB specimens, Eng. Fracture Mech., 3 (1971) pp. 27–43.

    Article  Google Scholar 

  36. Schra, L., Boerema, P. J. and Van Leeuwen, H. P., Experimental determination of the dependence of compliance on crack tip configuration of a tapered DCB specimen, Nat. Aerospace Inst. Amsterdam Rept. TR 73025 (1973).

    Google Scholar 

  37. Ottens, H. H. and Lof, C. J., Finite element calculations of the compliance of a tapered DCB specimen for different crack configurations, Nat. Aerospace Lab. Rept. TR 72083 (1972).

    Google Scholar 

  38. James, L. A. and Anderson, W. E., A simple experimental procedure for stress intensity factor calibration, Eng. Fracture Mechanics, 1 (1969) pp. 565–568.

    Article  Google Scholar 

  39. Broek, D., The effect of intermetallic particles on fatigue crack propagation in aluminium alloys, Fracture 1969, pp. 754–764, Chapman and Hall (1969).

    Google Scholar 

  40. Tada, H., Paris, P. C. and Irwin, G. R., The stress analysis of cracks handbook, Del Research Corporation (1973).

    Google Scholar 

  41. Sih, G. C., Handbook of stress intensity factors, Inst. of Fracture and Solid Mechanics, Lehigh University (1973).

    Google Scholar 

  42. Rooke, D. P. and Cartwright, D. J., Compendium of stress intensity factors, Her Majesty’s Stationary Office, London (1976).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). Determination of stress intensity factors. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics