Skip to main content

Engineering Aspects of Trickle Bed Reactors

  • Chapter
Chemical Reactor Design and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 110))

Abstract

This review deals with the engineering aspects of trickle-bed reactors as it applies to general design, scale-up, pilot plant design and operation, and reactor troubleshooting. Also, research needs in trickle-bed technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldi, G, S. Goto, C. K. Chow and J. M. Smith. Catalytic Oxidation of Formic Acid in Water. Ind. Chem. Eng. Proc. Des. Dev. 13 (1974) 447–452.

    Article  CAS  Google Scholar 

  2. Barkelew, C. H and B. S. Gambhir. Stability of Trickle Bed Reactors in Chemical and Catalytic Reactor Modeling. M. P. Dudukovic and P. L. Mills, ed. (ACS, 1984).

    Google Scholar 

  3. Capra, V, S. Sicardi, A. Gianetto and J. M. Smith. Effect of Liquid Wetting on Catalyst Effectiveness on Trickle-Bed Reactors. Can. J. of Chem. Eng. 60 (1982) 282–288.

    Article  CAS  Google Scholar 

  4. Charpentier, J.-C, N. Favier. Some Liquid Holdup Experimental Data in Trickle-Bed Reactors for Foaming and Nonfoaming Hydrocarbons. AICHE J. 21 (1975) 1213–1218.

    Article  CAS  Google Scholar 

  5. Charpentier, J.-C, N. Favier. Hydrodynamics of Two-Phase Flow Through Porous Media. Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions, G. P. L’Homme Editor. Precedings of an International Symposium Held at the University of Liege, March 1978, 78–108.

    Google Scholar 

  6. Chou, T. S, F. L. Worley and D. Luss. Ind. Eng. Chem. Process Des, Dev. 16 (1977) 424–427.

    Article  CAS  Google Scholar 

  7. Chou, T. S, F. L. Worley and D. Luss. Local Particle-Liquid Mass Transfer Fluctuations in Mixed-Phase Cocurrent Downflow Through a Fixed Bed in the Pulsing Regime. Ind. Eng. Chem. (Fundan) 18 (1979) 279–283.

    Article  CAS  Google Scholar 

  8. Chou, T. S Liquid Distribution in a Trickle-Bed with Redistribution Screens Placed in the Column. Ind. Eng. Chem. Process Des. Dev. 23 (1984) 501–505.

    Article  CAS  Google Scholar 

  9. Clements, L. D and P. C. Schmidt. Paper Presented at AICHE Sixty-Ninth Annual Meeting, November 1976, Chicago Illinois.

    Google Scholar 

  10. Colombo, A. J, G. Baldi and S. Sicardi. Chem. Eng. Sci. 31 (1976) 1101–1108.

    Article  CAS  Google Scholar 

  11. Dean, H. A and L. Lapidus. A Computational Model for Predicting and Correlating the Behavior of Fixed-Bed Reactors. AICHE J. 6 (1960) 656–663.

    Article  Google Scholar 

  12. De Bruijn, A Testing of HDS Catalysts in Small Trickle-Phase Reactors. Sixth International Congress of Cat. Proc. (Fundan) (1977) 951–964.

    Google Scholar 

  13. Dudukovic, M. P Catalyst Effectiveness Factor and Contacting Efficiency in Trickle-Bed Reactors. AIChE J. 23 (1977) 940–944.

    Article  CAS  Google Scholar 

  14. Edgar, N. D, A. D. Johnson, J. T. Pistorius, T. Varadi. Troubleshooting Made Easy, Hydrocarbon Processing (May 1984) 65–70.

    Google Scholar 

  15. Eigenberger, G and V. Wegerle. Runaway in an Industrial Hydrogenation Reactor. (7th International Symposium of Chemical Reaction Engineering, Boston, 1982) A.C.S. Symp. Series No. 196, 133–143.

    Google Scholar 

  16. Froment, G and K. B. Bischoff. Chemical Reactor Analysis and Design. (Wiley, New York, 1979).

    Google Scholar 

  17. Garcia, W and J. N. Pazos. Hydrodynamic Effects in Trickle-Bed Laboratory Reactors for Hydrodesulphurization and Hydrodemetallization of Heavy Feeds. Chem Eng. Sci. 37 (1982) 1589–1591.

    Article  CAS  Google Scholar 

  18. Gianetto, A, G. Baldi, B. Specchia and S. Sicardi. Hydrodynamics and Solid-Liquid Contacting Effectiveness in Trickle-Bed Reactors. AICHE J. 24 (1978) 1087–1104.

    Article  CAS  Google Scholar 

  19. Goto, S and J. M. Smith. Trickle-Bed Reactor Performance. Part 2. Reaction Studies. AICHE Journal 21 (1975) 714–720.

    Article  CAS  Google Scholar 

  20. Goto, S and J. M. Smith. Performance of Slurry and Trickle-Bed Reactors: Application to Sulfur Dioxide Removal. AICHE J. (1978) 286–293.

    Google Scholar 

  21. Goto, S and K. Mabuchi. Oxidation of Ethanol in Gas-Liquid Cocurrent Upflow and Downflow Reactors. Can. J. Chem. Eng. 62 (1984) 865–869.

    Article  CAS  Google Scholar 

  22. Hanika, J, V. Vosecky and V. Ruzicka. Dynamic Behavior of the Laboratory Trickle Bed Reactor. Chem Eng. J. 21 (1981) 109–114.

    Article  CAS  Google Scholar 

  23. Henry, H. C and J. B. Gilbert. Scale Up of Pilot Plant Data for Catalytic Hydroprocessing. Ind. Eng. Chem. Process Des. Dev. 12 (3) (1973) 328–334.

    Article  CAS  Google Scholar 

  24. Herskowitz, M, R. G. Carbonell and J. M. Smith. Effectiveness Factors and Mass Transfer in Trickle-Bed Reactors. AICHE J. 25 (2) (1979) 272–282.

    Article  CAS  Google Scholar 

  25. Herskowitz, M and J. M. Smith. Trickle-Bed Reactors: A Review. AICHE J. 29 (1983) 1–18.

    Article  CAS  Google Scholar 

  26. Herskowitz, M, and S. P. Mosseri. Global Rates of Reaction in Trickle-Bed Reactors: Effects of Gas and Liquid Flow Rates. Ind. Eng. Chem. Fundam. 22 (1983) 4–6.

    Article  CAS  Google Scholar 

  27. Herskowitz, M and M. Abuelhaija. Liquid-Solid Mass Transfer in a Trickle-Bed Reactor Measured by Means of a Catalytic Reaction. Chem. Eng. Sci. 40 (1985) 631–634.

    Article  CAS  Google Scholar 

  28. Hochman, J. M and E. Effron. Two-Phase Cocurrent Downflow in Packed Beds., Ind. Eng. Chem. Fundam. 8 (1969) 63–71.

    Article  CAS  Google Scholar 

  29. Hoftyzer, P. J Trans. Inst. Chem. Engrs. (London) 42 (1964) T109–T117.

    Google Scholar 

  30. Iannibello, A, S. Marengo and A. Guerci. Performance of a Pilot Trickle-Bed Reactor for Hydrotreating of Petroleum Fractions: Dynamic Analysis. Ind. Eng. Chem. Proc Dev. 22 (1983) 594–598.

    Article  CAS  Google Scholar 

  31. Jaffe, S. D Hot Spot Simulation in Commercial Hydrogenation Processes. Ind. Eng. Process Des. Dev. 15 (1976) 410–416.

    Article  CAS  Google Scholar 

  32. Kan, K. M and P. F. Greenfield. A Residence-Time Model for Trickle-Flow Reactors Incorporating Incomplete Mixing in Stagnant Regions. AICHE J. 29 (1) (1983) 123–132.

    Article  CAS  Google Scholar 

  33. Koros, R. M and E. J. Nowak. A Diagnostic Test of the Kinetic Regime in a Packed Bed Reactor. Chem. Eng. Sci. 22 (1967) 470.

    Article  CAS  Google Scholar 

  34. Koros, R. M Catalyst Utilization and Mix-Phase Fixed Bed Reactors. Proceedings of Fourth International, Sixteenth European Symposium on Chemical Reaction Engineering. Heidleberg, Federal Rep. of Germany (April 6-8, 1976) 372–381.

    Google Scholar 

  35. Koros, R. M Scale-up Considerations for Mixed Phase Catalytic Reactors. Multiphase Chemical Reactors Vol. II — Design Methods. A. E. Rodriguez, J. M. Calo and N. H. Sweed, eds. Sijthuff and Noordhoff (1981).

    Google Scholar 

  36. Krambeck, F. J Computers and Modern Analysis in Reactor Design. The 8th Inf. Symp. on Chem. React. Eng. (EFCE Pub. Series 37 1984).

    Google Scholar 

  37. Krishnaswany, S and J. R. Kittrell. Effective External Diffusion on the Deactivation Rates. AICHE J. 27 (1981) 125–131.

    Article  Google Scholar 

  38. Kwanda, K, H. Takuuschi, N. H., Koyana, Kogaku. 32 (1976) 121.

    Google Scholar 

  39. Larkins, R. P, R. R. White, and P. W. Jeffrey. Two-Phase Concurrent Flow in Packed Beds. AICHE J. 7 (1961) 231–239.

    Article  CAS  Google Scholar 

  40. Lee, H. H and J. M. Smith. Trickle-Bed Reactors: Criteria of Negligible Transport Effects and of Partial Wetting. Chem. Eng. Sci. 37 (2) (1982) 223–227.

    Article  CAS  Google Scholar 

  41. Levee, J. and J. M. Smith. Oxidation of Acetic Acid Solutions in a Trickle-Bed Reactor. AICHE J. 22 (1) (1976) 159–168.

    Article  Google Scholar 

  42. Madon, R. L, J. P. O’Connell and M. Boudart. Catalytic Hydrogenation of Cyclohexene: Part II. Liquid Phase Reaction on Supported Platinum in Gradientless Slurry Reactor. AICHE J. 24 (1978) 904–911.

    Article  CAS  Google Scholar 

  43. Marangozis, J Effect of Catalyst Particle Size on Performance of a Trickle-Bed Reactor. Ind. Eng. Chem. Process Des. Dev. 19 (1980) 326–328.

    Article  CAS  Google Scholar 

  44. Mears, D. E The Role of Axial Dispersion in Trickle Flow Laboratory Reators. Chem. Eng. Sci. 26 (1971) 1361–1366.

    Article  CAS  Google Scholar 

  45. Mears, D. E Role of Liquid Holdup and Effective Wetting in the Performance of Trickle Bed Reactors. ACS Symp. Ser. 133 (1974) 218–227.

    CAS  Google Scholar 

  46. Midoux, N., M. Favier and J. C. Charpenteier. Flow Pattern, Pressure Loss and Liquid Hold-up Data in Gas-Liquid Downflow Packed Beds with Foaming and Non-foaming Hydrocarbons. J. Chem. Eng. Japan 9 (1976) 350–356.

    Article  CAS  Google Scholar 

  47. Midoux, N, B. I. Morsi, M. Purwasamita, A. Laurent and J. C. Charpentier. Interfacial Area and Liquid Side Mass Transfer Coefficient in Trickle Bed Reactors Operating with Organic Liquids. Chem. Eng. Sci. 29 (1984) 781–794.

    Google Scholar 

  48. Mills, T., L, E. G. Beaudry and M. T. Dudukovic. Comparison and Prediction of Reactor Performance for Packed Beds with Two-Phase Flow: Downflow, Upflow and Countercurrent Flow. I. Kin. E. Symposium Ser. No. 87 (ISCRE 8) (1984) 527–534.

    Google Scholar 

  49. Morita, S and J. M. Smith. Mass Transfer and Contact and Efficiency in a Trickle-Bed Reactor. Ind. Eng. Chem. Fundam. 17 (2) (1978) 113–120.

    Article  CAS  Google Scholar 

  50. Montagna, A, Y. T. Shah. The Role of Liquid Holdup, Effective Catalyst Wetting, and Backmixing on the Performance of a Trickle-Bed Reactor for Residue Hydrodesulfurization. Ind. Eng. Chem. Proc. Des. Dev. 14 (1975) 479–483.

    Article  CAS  Google Scholar 

  51. Montagna, A, Y. T. Shah, J. A. Paraskos. Effect of Catalyst Particle Size on Performance of a Trickle-Bed Reactor. Ind. Eng. Chem. Process Des. Dev. 16 (1) (1977) 152–155.

    Article  CAS  Google Scholar 

  52. Onda, K, H. Takenuchi and Y. Kogama. Effect of Packing Materials on the Wetted Surface Area. Kagaku Kogaku 31 (1967) 126.

    CAS  Google Scholar 

  53. Papyannakos, N and J. Marangosis. Kinetics of Catalytic Hydrodesulfurization of a Petroleum Residue in a Batch-Recycle Trickle Bed Reactor. Chem. Eng. Sci. 39 (1984) 1051–1061.

    Article  Google Scholar 

  54. Paraskos, J. A, J. A. Frayer and Y. T. Shah. Effect of Holdup, Incomplete Catalyst Wetting and Backmixing During Hydroprocessing in Trickle-Bed Reactors. Ind. Eng. Chem. Process Des. Dev. 14 (1975) 315–322.

    Article  CAS  Google Scholar 

  55. Pavko, A, D. N. Misic and J. Levee. Kinetics in Three-Phase Reactors. The Chem. Eng. J. 21 (1981) 149–154.

    Article  CAS  Google Scholar 

  56. Petersen, E. E Chemical Reaction Analysis, Prentice-Hall, Englewood Cliffs, NJ (1965).

    Google Scholar 

  57. Puranik, S. S and A. Vogelpohl. Effective Interfacial Area in Irrigated Packed Columns. Chem. Eng. Sci. 29 (1974) 501–507.

    Article  CAS  Google Scholar 

  58. Reiss, L. P Cocurrent Gas-Liquid Contacting in Packed Volumes. Ind. Eng. Chem. Process Des. Dev. 6 (1967) 486–499.

    Article  CAS  Google Scholar 

  59. Reuther, K. J, C. Yang, W. Hayduk. Particle Mass Transfer During Cocurrent Downward Gas Liquid Flow in Packed Beds. Ind. Eng. Chem. Proc. Des. Dev. 19 (1980) 103–107.

    Article  Google Scholar 

  60. Ross, L. D Performance of Trickle Bed Reactors. Chem. Eng. Prog. 61 (1965) 77–82.

    CAS  Google Scholar 

  61. Sato, Y. T, Hirose, F, Takahashi, M and Y. Toda. Performance of Fixed Bed Catalyst Reactor with Coke Current Gas Liquid Flow. First Pacific Chemical Engineering Congress (Japan) Part 2 (1972) 187–196.

    Google Scholar 

  62. Sato, Y. T, Hirose, F, Takahasi, M, Toda, Y, Hashicuhi, J Flow Patterns and Pulsation Properties of Cocurrent Gas-Liquid Downflow in Packed Beds. Chem. Eng. Japan 6 (1973) 315–319.

    Article  CAS  Google Scholar 

  63. Satterfield, C. N, A. A. Pelosoff and T. K. Sherwood. Mass Tansfer Limitations in a Trickle-Bed Reactor. AICHE J. 27 (1969) 226–234.

    Article  Google Scholar 

  64. Satterfield, C. N Mass Transfer in Heterogeneous Catalysis. (The MIT Press, Cambridge, 1970).

    Google Scholar 

  65. Satterfield, C. N Trickle-Bed Reactors. AICHE Journal 21 (1975) 209–228.

    Article  CAS  Google Scholar 

  66. Satterfield, C. N, G. A. Huff, H. G. Stenger, J. L. Carter and R. L. Madon. A Comparison of Fischer-Tropsch Synthesis in a Vapor-Phase Fixed-Bed Reactor and in a Slurry Reactor. AICHE Annual Meeting, San Francisco (1984).

    Google Scholar 

  67. Satterfield, C. N, and F. Ozel. Direct Solid-Catalyzed Reaction of a Vapor in an Apparently Completely Wetted Trickle Bed Reactor. AICHE J. 19 (1973) 1259–1261.

    Article  CAS  Google Scholar 

  68. Sicardi, S., G. Baldi and V. Specchia. Hydrodynamic Models for the Interpretation of the Liquid Flow in Trickle-Bed Reactors. Chem. Eng. Sci. 35 (1980) 1775–1782.

    Article  CAS  Google Scholar 

  69. Sicardi, S, G. Baldi, A. Gianetto and V. Specchia. Catalyst Areas Wetted By Forming a Semi-Stagnant Liquid and Trickle-Bed Reactors. Chem. Eng. Sci. 35 (1980) 67–73.

    Article  CAS  Google Scholar 

  70. Specchia, V, and G. Baldi. Pressure Drop and Liquid Holdup for Two-Phase Cocurrent Flow in Packed Beds. Chem. Eng. Sci. 32 (1977) 515–523.

    Article  CAS  Google Scholar 

  71. Specchia, V, G. Baldi and A. Gianetto. Solid-Liquid Mass Transfer in Cocurrent Two-Phase Flow Through Packed Beds. Ind. Eng. Chem. Proc. Des. Dev. 17 (1978) 362–367.

    Article  CAS  Google Scholar 

  72. Stanek, B. and J. Hanika. The Effect of Liquid Flow Distribution on Catalytic Hydrogenation of Cyclohexene in an Adiabatic Trickle-Bed Reactor. Chem. Eng. Sci. 37. (1982) 1283–1288.

    Article  CAS  Google Scholar 

  73. Talmor, E Two-Phase Downflow Through Catalyst Beds. Part I. Flow Maps. AICHE J. 23 (1977) 868–874.

    Article  CAS  Google Scholar 

  74. Tan, C. S and J. M. Smith. Catalyst Particle Effectiveness with Unsymmetrical Boundary Conditions. Chem. Eng. Sci. 35 (1980) 1601–1609.

    Article  CAS  Google Scholar 

  75. Tarmy, B. L Reactor Technology in Kirk-Othmer. Encyclopedia of Chemical Technology. Vol. 19, 3rd Ed. (John Wiley, New York, 1982).

    Google Scholar 

  76. Tosun, G A Study of Cocurrent Down Flow of Non-foaming Gas — Liquid Systems in a Packed Bed. 1. Flow Regimes: Search for Generalized Flow Map. Ind. Eng. Can. Process Des. Dev. 23 (1984) 29–35.

    Article  CAS  Google Scholar 

  77. Tosun, G A Study of Cocurrent Down Flow of Non-Foaming Gas-Liquid Systems in a Packed Bed. 2. Pressure Drop: Search for a Correlation. Ind. Eng. Can. Process Des. Dev. 23 (1984) 35–39.

    Article  CAS  Google Scholar 

  78. Tsukamoto, T, S. Morita and J. Okada. Oxidation of Glucose on Immobilized Glucose Oxidase in a Trickle-Bed Reactor: Effect of Liquid-Solid Contacting Efficiency on the Global Rate of Reaction. Ken. Eng. Farm. Bull. 30 (1982) (5) 1539–1549.

    CAS  Google Scholar 

  79. Tsukamoto, T, S. Morita and J. Okada. Oxidation of Glucose on Immobilized Glucose Oxidase: Trickle-Bed Reactor Performance. (1983).

    Google Scholar 

  80. Turek, F, K. Chakrabarti, R. Lange, R. Geike and W. Flock. On The Experimental Study and Scale-up of Three-Phase Reactors. Chem. Eng. Sci. 38 (2) (1983) 275–283.

    Article  CAS  Google Scholar 

  81. Turek, F and R. Lange. Mass Transfer in Trickle-Bed Reactors at Low Reynolds Number. Chem. Eng. Sci. 36 (1981) 569–579.

    Article  CAS  Google Scholar 

  82. Turpin, J. L and R. L. Huntington. Prediction of Pressure Drop for Two-Phase, Two-Component Concurrent Flow in Packed Beds. AICHE J. 13 (1967) 1196–1202.

    Article  Google Scholar 

  83. Van Deemter, J. J Trickle Hydrodesulfurization — A Case History. Third European Symposium on Chemical Reaction Engineering. (1964) 215–222.

    Google Scholar 

  84. Van Dongen, R. H, D. Bode, H. Vanderijk and J. Van Klinken. Hydrodemetallization of Heavy Residual Oils in Laboratory Trickle-Flow Liquid Recycle Reactors. Ind. Eng. Can. Process Des. Dev. 19 (1980) 630–635.

    Article  Google Scholar 

  85. Van Klinken, J and R. H. Van Dongen. Catalyst Dilution for Improved Performance of Laboratory Trickle-Flow Reactors. Can. Eng. Sci. 35 (1980) 59–66.

    Article  Google Scholar 

  86. Weekman, V. W, Jr. and J. E. Meyers. Fluid Flow Characteristics of Cocurrent Gas-Liquid Flow in Packed Beds. AICHE J. 10 (1964) 951–957.

    Article  CAS  Google Scholar 

  87. Wijffels, J, B. Verloop and F. J. Zzuiderweg. Wetting of Catalyst Particles under Trickle-Bed Conditions. Advances in Chemical Science (Third Int. Symp. Chem. React. Eng.) 133 (1974) 151–163.

    Article  CAS  Google Scholar 

  88. Yoshikawa, N, K. E. Iwai, S. Goto and H. Teshima. Liquid Solid-Mass Transfer and Gas Liquid Coker Flows to Beds of Small Packings. Journal Chem. Eng. (Japan) 14 (1981) 444–450.

    CAS  Google Scholar 

  89. Zarzycki, R Inst. Chem. Eng. 12 (1972) 82.

    Google Scholar 

  90. Zhunglu, P, F. Han-Yu and J. M. Smith. Trickle-Bed Effectiveness Factors for Liquid Phase Reactants. AICHE J. 30 (1984) 818–820.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Koros, R.M. (1986). Engineering Aspects of Trickle Bed Reactors. In: de Lasa, H.I. (eds) Chemical Reactor Design and Technology. NATO ASI Series, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4400-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4400-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8457-4

  • Online ISBN: 978-94-009-4400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics