Skip to main content

The Propagation of Turbulent Flames and Detonations in Tubes

  • Chapter
Advances in Chemical Reaction Dynamics

Part of the book series: NATO ASI Series ((ASIC,volume 184))

Abstract

By artificially increasing the roughness of the wall of the tube using a wire spiral or a sequence of equally spaced orifice plates, it is possible to generate very intense large scale turbulence. Under these conditions it is possible to observe five different propagation regimes of combustion waves. The self quenching regime corresponds to a flame accelerating initially to a high velocity before quenching itself when the turbulent mixing rate exceeds the chemical reaction rate of the combustible mixture. The weak turbulent deflagration regime corresponds to flame speeds of the order of few tens of meters per second. The steady state velocity of this regime is achieved by the balance of the positive and negative effects of turbulence on the burning rate (ie., enhancement of mass and energy transport versus quenching due to mixing and flame stretch). In the sonic or choking regime, the flame speed corresponds closely to the sound speed in the burnt gases. The gasdynamic choking is brought about by the combined effect of friction and heat addition in a compressible pipe flow. The quasi-detonation regime corresponds to the low velocity detonation phenomenon in which the severe momentum losses give detonation velocity significantly below the normal Chapman-Jouguet value. The existence of this regime is based on the criterion λ/d ≤ 1 where “λ” and “d” denote the detonation cell size and the orifice diameter respectively. The fifth regime of normal Chapman-Jouguet detonation occurs when d/ λ≥ 13 in accord with the result of the critical tube diameter problem. Qualitative discussions of the turbulent flame structure according to the ideas of Chomiak are given. A unified concept is advanced in that it is postulated that shear and turbulence play the essential roles not only in the propagation of deflagration, but in detonation as well. Auto-ignition by shock heating is assigned a lesser role, while the transverse turbulent shear layers generated by the triple shock configuration in the front of a cellular detonation are assumed to play the key role in the enhancement of rapid chemical reactions necessary for the propagation of a detonation wave. The principle argument being that since free radicals are in abundance in the reaction zone, it is more efficient to induce chemical reactions in the unburned gases by rapid turbulent mixing rather than to generate the free radicals by thermal dissociation in the shock. Thus the role of the shock front in detonation is to preheat the mixture leading to higher local diffusion rates and more important, to generate turbulent shear layers via triple shock collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Lee, J.H.S. (1984)Annual Review of Fluid Mechanics 16, 311–36.

    Article  Google Scholar 

  • Lee, J.H.S. and Guirao, C.M. (1981) Gasdynamic Effects of Fast Exothermic Reactions, inFast Reactions in Energetic SystemsEds. C. Capellos and R.F. Walker, D. Reidel Publ. Co.

    Google Scholar 

  • Lee, J.H.S. and Moen, I.O. (1980Progr. Energy Comb. Sci.6, 359–389.

    Article  CAS  Google Scholar 

  • Hjertager, B.H. (1981)‘Numerical Simulation of Turbulent Flame and Pressure Development in Gas Explosions’.Proc. Int. Mtg. on Fuel-Air Explosions, Eds. Lee, J.H. and Guirao, C.M., University of Waterloo Press.

    Google Scholar 

  • Marx, K.D., Lee, J.H.S. and Cummings, J.C. (1985)‘Modelling of Flame Acceleration in Tubes with Obstacles’.Proc. 11th IMACS World Congress, Oslo, Norway, August 5–9.

    Google Scholar 

  • Lee, J.H.S., Knystautas, R., Chan, C. Barr, P.K. Grcar, J.F. and Ashurst, W.T. (1983)‘Turbulent Flame Acceleration Mechanisms and Computer Modelling’.Proc. International Meeting on Light-Water Reactor Severe Accident Evaluation, Cambridge, Mass. August 28 - September 1. Also available as SANDIA Rept. 83–8655. Livermore, California.

    Google Scholar 

  • Mallard, E. and Le Chatelier, H. (1881)C.R. Acad.Sci. Paris 9 145–148.

    Google Scholar 

  • Berthelot, M. and Vieille, P. (1882)C.R. Acad.Sci. Paris 94 pp. 101–108

    Google Scholar 

  • Berthelot, M. and Vieille, P. (1882)C.R. Acad.Sci. Paris 94, 16 Jan., pp. 882–823

    Google Scholar 

  • Berthelot, M. and Vieille, P. (1882)C.R. Acad.Sci. Paris 27 Mars, Vol. 95, pp. 151–157, 24 Juillet.

    Google Scholar 

  • Chapman, W.R. and Wheeler, R.V. (1926), (1927)J. Chem. Soc. (London), Vol.37, p. 2139 and Vol. 38.

    Google Scholar 

  • Schelkhin, K.I. (1940)J.E.P.T. (USSR),10, 823–827.

    Google Scholar 

  • Guenoche, H. and Manson, N. (1949)‘Influence des Conditions aux Limits Transversales sur la Propagation des Ondes de Shock et de Combustion.Revue de l’Institut Français du Petrole, No. 2, pp. 53–69.

    Google Scholar 

  • Brochet, C. (1966)‘Contribution à l’Etude des Détonations Instables dans les Mélanges Gaseux’. Thèses Presentàes à la Fac. des Scie., Poitiers.

    Google Scholar 

  • Wagner, H.G. (1982) ‘Some Experiments about Flame Acceleration’First International Specialist Meeting on Fuel-Air Explosion, Montreal, 1981. University of Waterloo Press, SM Study No. 16, pp. 77–99.

    Google Scholar 

  • Lee, J.H.S., Knystautas, R. and Freiman, A. (1984)Combustion and Flame 56, 227–239.

    Article  CAS  Google Scholar 

  • Lee, J.H.S., Knystautas, R. and Chan, C. (1984) Proc.20th Symp. (International) on Combustion. The Combustion Institute, Pittsburgh, Pa.

    Google Scholar 

  • Knystautas, R., Lee, J.H., Peraldi, P. and Chan, C. (1985)10th ICDERS, Berkeley, Calif., August 4–9.

    Google Scholar 

  • Hjertager, B.H., Fuhre, K., Parker, S.J. and Bakke, J.R. (1983) ‘Flame Acceleration of Propane-Air in a Large-Scale Obstructed Tube‘Presented at the 9th International Colloquium on Dynamics’of Explosions and Reactive Systems, Poitiers.

    Google Scholar 

  • Urtiew, P.A. (1982) ‘Recent Flame Propagation Experiments at LLNL within the Liquified Gaseous Fuels Spill Safety Program’.First International Specialist Meeting on Fuel-Air Explosions, Montreal 1981. University of Waterloo Press SM Study No. 16, 924–947.

    Google Scholar 

  • Deshaies, B. and Leyer, J.C. (1981) ‘Flow Field Induced by Unconfined Spherical Accelerating Flames’,Comb. and Flame 40, 141–153.

    Article  CAS  Google Scholar 

  • Zeeuwen, J.P. and Van Wingerden, C.J.M. (1983) ‘On the Scaling of Vapor Cloud Explosion Experiments’.Presented at the 9th International Colloquium on Dynamics of Explosions and Reactive Systems, Poitier.

    Google Scholar 

  • Yip, T.W.G., Strehlow, R.A. and Ormsbee, A.I. (1983) ‘Theoretical and Experimental Studies in Acoustic Waves Generated by a Cylindrical Flame and 2-D Flame-Vortex Interactions’.Presented at the 1983 Fall Technical Meeting, Eastern Section of The Combustion Institute, November, Providence, R.I.

    Google Scholar 

  • Sherman, M.P., Tieszen, S., Benedick, W., Fisk, J., Carcassi, M. (1985) ‘The Effect of Transverse Venting on Flame Acceleration and Transition to Detonation in a Large Channel’.10th ICDERS, Berkeley, California, August 4 – 9.

    Google Scholar 

  • Thibault, P., Liu, Y.K., Chan, C., Lee, J.H., Knystautas, R., Guirao, C., Hjertager, B. and Fuhre, K. (1982) ‘Transmission of and Explosion Through an Orifice’.Proc. 19th Symp. (International) on Combustion. The Combustion Institute, Pittsburgh, Pa. pp. 599–606.

    Google Scholar 

  • Ashurst, W. and Barr, P. (1982) ‘Discrete Vortex Simulation of Flame Acceleration due to Obstacle Generated Flow’.1982 Fall Meeting of Western States Section of The Combustion Institute. Paper WSS/CI 82–84. Sandia National Lab. Rept. SAND 82–8724.

    Google Scholar 

  • Schelkhin, K. (1966) ‘Instability of Combustion and Detonation of Gases’.Soviet Physics USPEKHI,8, 5, 780.

    Article  Google Scholar 

  • Vasiliev, A.A. (1982) ‘Geometric Limits of Gas Detonation Propagation’,Fiz. Goreniya Vzryre 18, 132–136.

    Google Scholar 

  • Kogarko, S.M. and Zeldovich, Y. B. (1948)Dokl. Akad. Nauk SSSR,63, 553.

    CAS  Google Scholar 

  • Dove, J.E. and Wagner, H.G. (1960)Proc. 8th Symp. (International) on Combustion, 589–600. The Combustion Institute, Pittsburgh, Pa.

    Google Scholar 

  • Manson, N. (1946)Comp. Rendu 222, p. 46.

    Google Scholar 

  • Fay, J.A. (1952)J. Chem. Phys. 20, p. 942.

    Google Scholar 

  • Moen, I.O., Donato, M., Knystautas, R. and Lee, J.H.S. (1981)18th Symp. (International) on Combustion, pp. 1615–1623, The Combustion Institute, Pittsburgh, Pa.

    Google Scholar 

  • Dupré, G., Knystautas, R. and Lee, J.H. (1985)10th ICDERS, Berkeley, California, August 4 – 9.

    Google Scholar 

  • Murray, S. (1984) ‘The Influence of Initial and Boundary Conditions on Gaseous Detonation Waves’. Ph.D. Thesis, McGill University.

    Google Scholar 

  • Damkohler, G. (1940)Z. Elektrochemie Angewandte Phys. Chem.46 601. (English Translation NACA TM 1112 (1947).

    CAS  Google Scholar 

  • Tennekes, H. (1968)Phys. Fluids 11, 669.

    Article  Google Scholar 

  • McCormach, P., Scheller, K., Mueller, G., Tisher, R. (1972)Comb. and Flame 19, 297.

    Article  Google Scholar 

  • Chomiak, J. (1979)Progr. Energy Comb. Sci.5, 207–221.

    Article  CAS  Google Scholar 

  • Bach, G., Knystautas, R., Lee, J.H.S. (1968)12th Symp. (International) on Combustion, pp. 883–67. The Combustion Institute, Pittsburgh, Pa.

    Google Scholar 

  • Lundstrom, E. and Oppenheim, A.K. (1969)Proc. Roy. Soc. London, Ser. A, 310, pp. 463–78.

    Google Scholar 

  • Thomas, G.O. and Edwards, D.H. (1983) ‘Simulation of Detonation Cell Kinematics Using Two-Dimensional. Reactive Blast Waves’.J. Phys. D: Appl. Phys.,16, 1881–1892.

    Article  CAS  Google Scholar 

  • Urtiew, P. and Oppenheim, A.K. (1966)Proc. Roy. Soc.,A295, 13–28.

    Google Scholar 

  • Meyer, J.W., Urtiew, P.A. and Oppenheim, A.K. (1970)Comb. and Flame 14, No. 1, pp. 13–20.

    Article  CAS  Google Scholar 

  • Knystautas, R., Lee, J.H., Moen, I.O. and Wagner, H.Gg. (1979) Proc.17th Symp. (International) on Combustion, pp. 1235–1245. The Combustion Institute, Pittsburgh, Pa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Lee, J.H.S. (1986). The Propagation of Turbulent Flames and Detonations in Tubes. In: Rentzepis, P.M., Capellos, C. (eds) Advances in Chemical Reaction Dynamics. NATO ASI Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4734-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4734-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8604-2

  • Online ISBN: 978-94-009-4734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics