Skip to main content

Receptor Molecules, Coprecipitation and Ion Exchange Processes in the Deposition of Metal Ions in Bone

  • Chapter
Metals in Bone

Abstract

The functions of bone include mechanical and protective roles and the involvement in mineral metabolism and marrow development. As a connective tissue bone is a special case in that it contains calcium phosphate mineral, is remodelled continuously and it is capable of regeneration without production of scar tissue, [1]. The peculiar constituents of bone tissue, particularly the mineral phase of calcium phosphate, inevitably results in accumulation of many materials introduced into the blood circulation by either natural processes or artificial means. This fact, together with the reasonably long life of newly-synthesized bone in all but the youngest individuals, allows this tissue to act as a sink for a wide variety of substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urist, M. R., DeLange, R. J. and Finerman, G. A. M. (1983). Bone cell differentiation and growth factors. Science, 220, 680–686.

    Article  PubMed  CAS  Google Scholar 

  2. Engstrom, A. (1956). Structure of bone from the anatomical to the molecular level. In: Wolstenholme, G. E. W. and O’Connor, C. M. (eds). Bone Structure and Metabolism. pp. 3–13. ( Boston: Little, Brown and Co. )

    Google Scholar 

  3. Neuman, W. F. and Neuman, M. W. (1953). The nature of the mineral phase of bone. Chem. Rev., 53, 1–45.

    Article  CAS  Google Scholar 

  4. DeJong, W. F. (1926). La substance minerale dans les os.Recl. Trav. Chim. Pays-Bas Belg.,45, 445–448.

    CAS  Google Scholar 

  5. Moreno, E. C., Kresak, M. and Hay, D. I. (1984). Adsorption of molecules of biological interest onto hydroxyapatite.Calcif. Tissue Int., 36,48–59.

    Article  PubMed  CAS  Google Scholar 

  6. Bio-Rad Catalogue J. (1984). Hydroxylapatite applications. pp. 41–44. ( Watford, U. K.: Bio-Rad Laboratories Ltd. )

    Google Scholar 

  7. Posner, A. S. (1969). Crystal chemistry of bone mineral.Physiol. Rev., 49, 760–792

    PubMed  CAS  Google Scholar 

  8. Termine, J. D. and Posner, A. S. (1967). Amorphous/crystalline interrelationships in bone mineral. Calcif. Tissue Int., 1, 8–23.

    Article  CAS  Google Scholar 

  9. Glimcher, M. J. (1981). On the form and function of bone: From molecules to organs. Wolff’s law revisited. In: Veis, A. (ed.). The Chemistry and Biology of Mineralised Connective Tissues. pp. 618–673. ( New York: Elsevier )

    Google Scholar 

  10. Neuman, W. F. (1980). Bone material and calcification mechanisms. In: Urist, M. R. (ed.). Fundamental and Clinical Bone Physiology. pp. 83–107. ( Philadelphia: Lippincott )

    Google Scholar 

  11. Brookes, M. (1971). The Blood Supply of Bone. ( London: Butterworths )

    Google Scholar 

  12. Kelly, P. J. (1983). Pathways of transport in bone. In: Handbook of Physiology - The Cardiovascular System III, Chapter 12. pp. 371–396.

    Google Scholar 

  13. Cumming, J. D. (1962). A study of blood flow through bone marrow by a method of venous effluent collection. J. Physiol.,162, 13–20.

    PubMed  CAS  Google Scholar 

  14. Post, M. and Shoemaker, W.C. (1964). Method for measuring bone metabolism in vivo. J. Bone Jt Surg., 46A, 111–120.

    CAS  Google Scholar 

  15. Shim, S. S. and Patterson, F. P. (1967).A direct method of qualitative study of bone blood circulation. Surg. Gynec. & Obstet., 125, 261–268.

    Google Scholar 

  16. Copp, D. H. and Shim, S. S. (1965). Extraction ratio and bone clearance of 85Sr as a measure of effective bone blood flow. Circ. Res., 16, 461–467.

    PubMed  CAS  Google Scholar 

  17. Kelly, P. J., Xipintsoi, T. and Bassingthwaighte, J. B. (1971). Blood Flow in canine tibial diaphysis estimated by iodoantipyrine 125I-washout. J. Appl. Physiol., 31, 38–47.

    PubMed  CAS  Google Scholar 

  18. Paradis, G. R. and Kelly, P. J. (1975). Blood flow and mineral deposition in canine tibial fractures. J. Bone Jt Surg., 57A, 200–226.

    Google Scholar 

  19. Kane, W. J. (1968). Fundamental concepts in bone blood flow studies. J. Bone Jt Surg., 50A, 801–811.

    Google Scholar 

  20. McElfresh, E. C. and Kelly, P. J. (1974). Simultaneous determination of blood flow in cortical bone, marrow and muscle in canine-hind-leg by femoral artery catheterization. Calcif. Tissue Res., 14, 301–307.

    Article  PubMed  CAS  Google Scholar 

  21. Brookes, M. (1967). Blood Flow rates in compact cancellous bone and bone marrow. J. Anat., 101, 533–541.

    PubMed  CAS  Google Scholar 

  22. Gross, P. M., Marcus, M. L. and Heistad, D. D. (1981).Measurement of blood flow to bone and marrow in experimental animals by means of blood flow to bone and marrow in experimental animals by means of the microsphere technique. J. Bone Jt Surg., 63A, 1028–1033.

    Google Scholar 

  23. Shim, S. S., Copp, D. H. and Patterson, F. P (1967). An indirect method of blood flow measurement based on the bone clearance of circulating bone seeking radioisotope. J. Bone Jt Surg., 49A., 693–702.

    Google Scholar 

  24. Gross, P.M., Heistad, D. D. and Marcus, M. L. (1979). Neuro-humoral regulation of blood flow to bones and marrow. Am. J. Physiol., 237, H440–H448.

    PubMed  CAS  Google Scholar 

  25. Falkow, B. and Neil, E. (1971). Circulation. pp. 518–523. ( London: Oxford Univ. Press )

    Google Scholar 

  26. Cofield, R. H., Bassingwaighte, J. B. and Kelly, P. J. (1975). Strontium-85 extraction during transcapillary passage in tibial bone. J. Appl. Physiol., 39, 596–602.

    PubMed  CAS  Google Scholar 

  27. Neuman, W. F., Terepka, A. R., Canas, F. and Triffitt, J. T. (1968). The cycling concept of exchange in bone. Calcif. Tissue Res. 2, 262–270.

    Article  PubMed  CAS  Google Scholar 

  28. Kelly, P. J. and Bassingthwaighte, J. B. (1977). Studies on bone ion exchange using multiple tracer indicator dilution techniques. Fed. Proc., 36, 2634–2639.

    PubMed  CAS  Google Scholar 

  29. Zamboni, L. and Pease, D.C. (1961). The vascular bed of red bone marrow. J. Ultrast. Res., 5, 65–85.

    Article  CAS  Google Scholar 

  30. Davies, D. R., Bassingthwaighte, J. B. and Kelly, P. J. (1976). Transcapillary exchange of strontium and sucrose in canine tibia. J. Appl. Physiol., 40, 17–22.

    PubMed  CAS  Google Scholar 

  31. Triffitt, J. T. (1980). The organic matrix of bone tissue. In: Urist, M. R. (ed.). Fundamental and Clinical Bone Physiology. pp. 45–82. ( Philadelphia: Lippincott )

    Google Scholar 

  32. Doty, S. B. and Schofield, B. H. (1972). Metabolic and structural changes within osteocytes of rat bone. In: Calcium, Parathyroid Hormone and the Calcitonins, Proc. Parathyroid Conf., 4th, Chapel Hill N. Carolina. pp. 353–364. ( Amsterdam: Excerpta Med. Fd. )

    Google Scholar 

  33. Owen, M., Howlett, C.R. and Triffitt, J.T. (1977). Movement of 125I albumin and 125I polyvinylpyrrolidone through bone tissue fluid. Calcif. Tissue Res., 23, 103–112.

    Article  PubMed  CAS  Google Scholar 

  34. Michelsen, K. (1967). Pressure relationships in the bone marrow vascular bed. Acta physiol. Scand., 71, 12–29.

    Article  Google Scholar 

  35. Shim, S. S., Hawk, H. E. and Yu, W. Y. (1972). The relationship between blood flow and marrow cavity pressure of bone. Surg. Gynec. and Obstet., 135, 353–360.

    CAS  Google Scholar 

  36. Seliger, W. G. (1970). Tissue fluid movement in compact bone. Anat. Rec. 166, 247–255.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson, D. W. (1960). Studies of the lymphatic pathways of bone and bone marrow. J. Bone Jt Surg., 42A, 716–717.

    Google Scholar 

  38. Cooper, R. R., Milgram, J. W. and Robinson, R. A. (1966). Morphology of the osteon. J. Bone Jt Surg., 48, 1239–1271.

    CAS  Google Scholar 

  39. Yoffey, J. M. and Courtice, F. C. (1956). Lymphatics, Lymph and Lymphoid Tissue. ( London: Edward Arnold).

    Google Scholar 

  40. Termine, J. D. (1983). Osteonectin and other newly described proteins of developing bone. In: Peck, W. A. (ed.). Bone and Mineral Research, Annual 1. pp. 144–156. ( Amsterdam: Excerpta Medica )

    Google Scholar 

  41. Delmas, P. D., Tracy, R. P., Riggs, B. L., and Mann, K. G. (1984) Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif. Tissue Int., 36, 308–316.

    Article  PubMed  CAS  Google Scholar 

  42. Gundberg, C. M., Hauschka, P. V., Lian, J. B., and Gallop, P. M. (1984). Osteocalcin: isolation and characterization. Methods Enzymol. In press.

    Google Scholar 

  43. Price, P. (1983). Osteocalcin. In: Peck, W. A. (ed.). Bone and Mineral Research, Annual 1. pp. 157–190. Amsterdam: Excerpta Medica.

    Google Scholar 

  44. Herring, G. M., Vaughan, J., and Williamson, M. (1962). Preliminary report on the site of localization and possible binding agent for yttrium, americium and plutonium in cortical bone. Health Phys., 8, 717–724.

    Article  PubMed  CAS  Google Scholar 

  45. Herring, G. M. (1972). The organic matrix of bone. In: Bourne, G. H. (ed.). The Biochemistry and Physiology of Bone, 2nd edit., 1. pp. 128–189. London: Academic Press.

    Google Scholar 

  46. Chipperfield, A. R. and Taylor, D. M. (1972). The binding of thorium (IV), plutonium (IV), americium (III) and curium (III) to the constituents of bovine cortical bone in vitro. Rad. Res. 51, 15–30.

    Article  CAS  Google Scholar 

  47. Fisher, L. W., Whitson, S. W., Avioli, L. V. and Termine, J. D. (1983). Matrix sialoprotein of developing bone. J. biol. Chem., 258, 12723–12727.

    PubMed  CAS  Google Scholar 

  48. Stenflo, J. and Suttie, J. W. (1977). Vitamin K-dependent formation of a-carboxyglutamic acid. Ann. Rev. Biochem., 46, 157–172.

    Article  PubMed  CAS  Google Scholar 

  49. Hauschka, P. V. and Gallop, P. M. (1977). Purification and calcium-binding properties of osteocalcin, the o-carboxyglutamate-containing protein of bone. In: Wasserman, R. H., Corradino, R. A., Carafoli, E., Kretsinger, R. H., MacLennan, D. H. and Sieges, F. L. (eds). Calcium binding proteins and calcium function. pp. 338–347. ( Amsterdam: Elsevier North-Holland Inc. )

    Google Scholar 

  50. Price, P. A., Urist, M. R., and Otawara, Y. (1983). Matrix Gla protein, a new 8-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem. Biophys. Res. Comm. 117,765–771.

    Article  PubMed  CAS  Google Scholar 

  51. Hauschka, P. V. (1979). Osteocalcin in developing bone systems. In: Suttie, J. W. (ed.). Vitamin K metabolism and vitamin K-dependent proteins. pp. 227–236. Baltimore: University Park Press.

    Google Scholar 

  52. Nishimoto, S. K., Cotter, T. M., and Nimni, M. E. (1984). Presence of bone Gla protein and higher molecular weight immunoreactive molecules in extracts of rat bone. Trans. Orthop. Res. Soc., Abst. 194.

    Google Scholar 

  53. Glimcher, M. J. (1984). Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil. Trans. R. Soc. Lond. B304, 409–588.

    Google Scholar 

  54. Spector, A. R. and Glimcher, M. J. (1972). The extraction and characterization of soluble anionic proteins from bone. Biochim. biophys. Acta, 263, 593–603.

    CAS  Google Scholar 

  55. Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., and Martin, G. R. (1981). Osteonectin a bone-specific protein linking mineral to collagen. Cell, 26, 99–105.

    Article  PubMed  CAS  Google Scholar 

  56. Wasi, S., Tung, P., Otsuka, K., Yao, K. L., Sodek, J., and Termine, J. D. (1983). Synthesis of an osteonectin-like protein by various connective tissue cells in culture. Calcif. Tissue Int., 35, 652.

    Google Scholar 

  57. Herring, G. M. (1968). Studies on the protein bound chondroitin sulphate of bovine cortical bone. Biochem. J., 107, 41–49.

    PubMed  CAS  Google Scholar 

  58. Fisher, L. W., Termine, J. D., Dejter, S. W., Whitson, S. W., Yanagishita, M., Kimura, J. H., Hascall, V. C., Kleinman, H. K., Hassell, J. R., and Nilsson, B. (1983). Proteoglycans of developing bone. J. biol. Chem., 258, 6588–6594.

    PubMed  CAS  Google Scholar 

  59. Priest, N. D. (1980). Plutonium in bone: the effects of bone remodelling. In: Bone and Bone Seeking Radionuclides: Physiology, Dosimetry and Effects, EULEP Symposium, Rotterdam. pp. 39 - 55. London: Harwood Academic Publishers.

    Google Scholar 

  60. Stenner, D. D., Romberg, R. W., Tracy, R. P., Katzman, J. A., Riggs, B. L., and Mann, K. G. (1984). Monoclonal antibodies to native noncollagenous bone-specific proteins. Proc. Natl. Acad. Sci. U.S.A., 81, 2868–2872.

    Article  PubMed  CAS  Google Scholar 

  61. Mardon, H. J., and Triffitt, J. T. (1984). The expression of a new bone-specific, bone matrix-derived protein by osteogenic cells. Proceedings British Connective Tissue Society, St. Catharine’s College Oxford.

    Google Scholar 

Download references

Authors

Editor information

Nicholas D. Priest

Rights and permissions

Reprints and permissions

Copyright information

© 1985 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Triffitt, J.T. (1985). Receptor Molecules, Coprecipitation and Ion Exchange Processes in the Deposition of Metal Ions in Bone. In: Priest, N.D. (eds) Metals in Bone. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4920-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4920-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8680-6

  • Online ISBN: 978-94-009-4920-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics