Skip to main content

Visual Stabilization During Head Movement

  • Chapter
Brain Mechanisms and Spatial Vision

Part of the book series: NATO ASI Series ((ASID,volume 21))

Abstract

In order to obtain a clear absolute perception of the visual surround during head movements, the visual information aquired in retinotopic coordinates should be transformed into absolute coordinates by taking into account head movement. The aim of this paper is to show how an estimate of head absolute velocity is made available in the vestibular nuclei (VN) from their vestibular and visual inputs. An attempt is also made to link the output of VN to reflex eye movements, self-motion sensation, and visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allum, J.H.J., W. Graf, J. Dichgans, and C.L. Schmidt, Visual- Vestibular Interactions in the Vestibular Nuclei of the Goldfish, Exp. Brain Res. 26 (1976) 463–485.

    Article  PubMed  Google Scholar 

  2. Baloh, R.W., R.D.Yee, J.Kimm, and V.Honrubia, Vestibularocular Reflex in Patients with Lesions Involving the Vestibulocerebel- lum. Exp.Neurol. 72 (1981) 141–152.

    Article  PubMed  Google Scholar 

  3. Barnes, G.R., A.J.Benson, and A.R.J. Prior, Visual-Vestibular Interaction in the Control of Eye Movement. Aviat.Space Environ. Med. 49 (1978) 55–564.

    Google Scholar 

  4. Barnes, G.R. and L.N.Forbat, Cervical and Vestibular Afferent Control of Oculomotor Response in Man. Acta Otolaryngol. 88 (1979) 79–87.

    Article  PubMed  Google Scholar 

  5. Benson, A.J., Interaction between Semicircular Canals and Gravireceptors, in D.E.Busby, ed., Recent Advances in Aerospace Medicine (Dordrecht, Holland: D.Reidel Pub!., 1970), pp.249–261.

    Google Scholar 

  6. Berthoz, A., B.Pavard, and L.R.Young, Perception of Linear Horizontal Self-Motion Induced by Peripheral Vision (Linearvec- tion). Basic Characteristics and Visual-Vestibular Interactions. Exp.Brain Res. 23 (1975) 471–489.

    Google Scholar 

  7. Buizza, A., A.Leger, J.Droulez, A.Berthoz, and R.Schmid, Influence of Otolithic Stimulation by Horizontal Linear Acceleration on Optokinetic Nystagmus and Visual Motion Perception. Exp.Brain Res. 39 (1980) 165–176.

    Article  PubMed  Google Scholar 

  8. Buizza, A. and R.Schmid, Visual-Vestibular Interaction in the Control of Eye Movement: Mathematical Modelling and Computer Simulation. Biol.Cybern. 43 (1982) 209–223.

    Article  PubMed  Google Scholar 

  9. Dichgans, J., Optokinetic Nystagmus as Dependent on the Retinal Periphery via the Vestibular Nuclei, in R.Baker and A.Berthoz, eds., Control of Gaze by Brain Stem Neurons (Amsterdam: Elsevier North-Holland, 1977), pp.261–267.

    Google Scholar 

  10. Dichgans, J. and Th.Brandt, Visual-Vestibular Interaction. Effects on Self-Motion Perception and Postural Control, in R. Held, H.Leibowitz, and H.L.Teuber, eds., Handbook of Sensory Physiology, vol.VIII, Perception (Berlin: Springer-Verlag, 1978] pp.755–804.

    Google Scholar 

  11. Fernandez, C. and J.M.Goldberg, Physiology of Peripheral Neuron? Innervating Semi-Circular Canals of Squirrel Monkey. II. Response to Sinusoidal Stimulation and Dynamics of Peripheral Vestibular System. J.Neurophysiol. 34 (1971) 661–675

    PubMed  Google Scholar 

  12. Fischer, M.H. and A.E.Kormuller, Optokinetisch ausgelosteBewegungswahrnehnung und optokinetischer Nystagmus. J.Psychol. Neurol. 41 (1930) 273–308

    Google Scholar 

  13. Gibson, J.J., ed., Motion Picture Testing and Research, AAF Aviat. Psychol. Program Res. Rep. n. 7 ( Washington, D.C.: Government Printing Office, 1947 ).

    Google Scholar 

  14. Goldberg, J.M. and C. Fernandez, Physiology of Peripheral Neurons Innervating Semi-Circular Canals of the Squirrel Monkey. I. Resting Discharge and Response to Constant Angular Accelerations. J. Neurophysiol. 34 (1971) 635–660

    PubMed  Google Scholar 

  15. Goldberg J.M. and C. Fernandez, Physiology of Peripheral Neurons Innervating Semi-Circular Canals of the Squirrel Monkey. Ill. Variations among Units and Their Discharge Properties. J. Neurophysiol. 34.(1971) 676–684.

    Google Scholar 

  16. Held, R., Exposure History as a Factor in Maintaining Stability of Perception and Coordination. J. Nerv. Mental Disease 132 (1961) 26–32.

    Google Scholar 

  17. Helmholtz, H. von, Handbuch der physiologischen Optik (Hamburg, Leipzig: L. Voss, 1896 ).

    Google Scholar 

  18. Hixson, W.C., Frequency Response of the Oculovestibular System during Yaw Oscillation, Rep. NAMRL-1212 (Pensacola, F1.: Naval Aerospace Med. Res. Lab., 1974 ).

    Google Scholar 

  19. Keller, E.L. and W. Precht, Visual-Vestibular Responses in Vestibular Neurons in Intact and Cerebellectomized Alert Cat. Neurosci. 4 (1979) 1599–1613

    Article  Google Scholar 

  20. Koenig, E., J.H.J. Allum, and J. Dichgans, Visual Vestibular Interaction upon Nystagmus Slow Phase Velocity in Man. Acta Otolaryngol. 85 (1978) 397–410.

    Article  PubMed  Google Scholar 

  21. Lau, C.G.Y., V. Honrubia, H.A. Jenkins, R.W. Baloh, and R.D.Yee, Linear Model for Visual-Vestibular Interaction. Aviat. Space Environ. Med. 49 (1978) 880–885.

    Google Scholar 

  22. Lisberger, S.G. and A.F. Fuchs, Role of Primate Flocculus during Rapid Behavioral Modification of Vestibulo-Ocular Reflex. I. Purkinje Cell Activity during Visually Guided Horizontal Smooth Pursuit Eye Movements and Passive Head Roatation. J. Neurophysiol. 41 (1978) 733–763.

    Google Scholar 

  23. Lisberger, S.G. and A.F. Fuchs, Role of Primate Flocculus during Rapid Behavioral Modification of Vestibulo-Ocular Reflex. II. Mossy Fiber Firing Patterns during Horizontal Head Rotation and Eye Movement. J. Neurophysiol. 41 (1978) 764–777.

    Google Scholar 

  24. Mach, E., Grundlinien der Lehre von den Bewegungsempfindungen ( Leipzig: Engelmann, 1875 ).

    Google Scholar 

  25. Matin, L., Visual Localization and Eye Movements, in A.H. Wertheim, W.A. Wagenaar, and H.W. Leibowitz, eds., Tutorials in Motion Perception, NATO Conference Series, series III, vol.20 (New York: Plenum Press, 1982), pp.101–156.

    Google Scholar 

  26. Meiry, J.L., The Vestibular System and Human Dynamic Space Orientation, Sc. D. Thesis (Cambridge, Mass.: M.I.T., 1965 ).

    Google Scholar 

  27. Melvill Jones, G. and J.H. Mil sum, Frequency Analysis of Central Vestibular Units Activity Resulting from Rotational Stimulation of the Semicircular Canals. J. Physiol.(London) 219 (1971) 191– 215.

    Google Scholar 

  28. Miles, F.S., J.H. Fuller, D.J. Braitman, and B.M. Dow, Long Term Adaptive Changes in Primate Vestibulo-Ocular Reflex. Ill. Electrophysiological Observations in Flocculus of Normal Monkeys J. Neurophysiol. 43 (1980) 1437–1476.

    Google Scholar 

  29. Oman, C.M., A Heuristic Mathematical Model for the Dynamics of Sensory Conflict and Motion Sickness. Acta Otolaryngol. Suppl. 392 (1982) 3–44.

    Google Scholar 

  30. Raphan, Th., B. Cohen, and A. Matsuo, A Velocity Storage Mechani; Responsible for Optokinetic Nystagmus (OKN), Optokinetic After- Nystagmus (OKAN) and Vestibular Nystagmus, in R. Baker and A. Berthoz, eds., Control of Gaze by Brain Stem Neurons (Amsterdam: Elsevier/North-Holland, 1977), pp.37–47.

    Google Scholar 

  31. Reason, J.T., Motion Sickness Adaptation: a Neural Mismatch Model. J. Royal Soc. Med. 71 (1978) 819–829.

    Google Scholar 

  32. Robinson, D.A., Vestibular and Optokinetic Symbiosis: an Example of Explaining by Modelling, in R. Baker and A. Berthoz, eds., Control of Gaze by Brain Stem Neurons (Amsterdam: Elsevier/North Holland, 1977), pp.19–28.

    Google Scholar 

  33. Schmid, R., A. Buizza, and D. Zambarbieri, Modelling of the Vestibulo-Ocular Reflex and Its Use in Clinical Vestibular Analysis, in D.N. Ghista, ed., Applied Physiological Mechanics (New York: Harwood Acad. Publ1979), pp.779–893.

    Google Scholar 

  34. Schmid, R., A. Buizza, and D. Zambarbieri, A Non-Linear Model for Visual-Vestibular Interaction during Body Rotation in Man. Biol. Cybern. 36 (1980) 143–151.

    Google Scholar 

  35. Steer, R.W., The Influence of Angular and Linear Acceleration and Thermal Stimulation on the Human Semicircular Canal, Sc. D. Thesis (Cambridge, Mass.: M.I.T., 1972 ).

    Google Scholar 

  36. Szentagothai, J., The Elementary Vestibulo-Ocular Reflex Arc. J. Neurophysiol. 13 (1950) 395–407

    PubMed  Google Scholar 

  37. Van Egmond, A.A.T., T.T. Groen, and L.B.W. Jongkees, The Mechanics of the Semicircular Canal. J. Physiol. (London) 110 (1949) 1–17.

    Google Scholar 

  38. Waespe, W., U. Buttner, and V. Henn, Visual-Vestibular Interaction in the Flocculus of the Alert Monkey. I. Input Activity. Exp. Brain Res. 43 (1981) 337-–348

    Article  PubMed  Google Scholar 

  39. Waespe, W. and V. Henn, The Velocity Response of Vestibular Nucleus Neurons during Vestibular, Visual and Combined Angular Acceleration. Exp. Brain Res. 37 (1979) 337–347.

    Google Scholar 

  40. Waespe, W. and V. Henn, Visual-Vestibular Interaction in the Flocculus of the Alert Monkey. II. Purkinje Cell Activity. Exp. Brain Res. 43 (1981) 349 - 360.

    Article  Google Scholar 

  41. Wolfe, J.W., E.J. Engelken, J.E. Olson, and C.M. Kos, Low- Frequency Harmonic Acceleration as a Test of Labyrinthine Function: Basic Methods and Illustrative Cases. Trans. Am. Acad. Ophthalmol. Otolaryngol. 86 (1978) 130–142.

    Google Scholar 

  42. Young, L.R. and C.M. Oman, A Model for Vestibular Adaptation to Horizontal Rotation, in Proceedings of the Fourth Symposium on the Role of the Vestibular Organs in Space Exploration, Pensacola, F1., 1968, NASA SP-187 (Washington, D.C.: NASA Scientific and Technical Information Division, 1970 ), pp. 363 – 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Schmid, R., Buizza, A., Zambarbieri, D. (1985). Visual Stabilization During Head Movement. In: Ingle, D.J., Jeannerod, M., Lee, D.N. (eds) Brain Mechanisms and Spatial Vision. NATO ASI Series, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5071-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5071-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8743-8

  • Online ISBN: 978-94-009-5071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics