Skip to main content

Theory of Heterojunctions: A Critical Review

  • Chapter
Molecular Beam Epitaxy and Heterostructures

Part of the book series: NATO ASI Series ((NSSE,volume 87))

Abstract

The central aspect of an abrupt heterojunction, and the point of departure for all its device properties, is the exact lineup of the bands of the two semiconductors at the interface. Band lineups vary over a wide range. Lineup data from numerous heterosystems have been reported in the literature, but only a few can be considered truly reliable. Of several theories that have been proposed to explain and/or predict band lineups, the Harrison Atomic Orbital (HAO) Theory has been by far the most successful; it agrees with those experimental data that are considered most trustworthy to within ±0.13 eV (standard deviation). Also reviewed are the Frensley-Kroemer Pseudopotential (FKP) theory, the Electron Affinity Rule (EAR), and Self-Consistent Interface Potential (SCIP) calculations of band lineups.

Although heterojunctions between two III/V semiconductors grown by high-performance technologies appear to be well-understood, the origins of observed technology-dependent variations remain obscure. Heterojunctions involving different columns in the periodic table on the two sides are prone to various severe technology-sensitive complications that lie outside existing theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kroemer, Surf. Sci., Vol. 183 (1983), in the press.

    Google Scholar 

  2. For an excellent recent review see Ch. 4 of ref.[3]. Still-useful older reviews are contained in refs. [4] and [5].

    Google Scholar 

  3. H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers, Academic Press, New York, 1978.

    Google Scholar 

  4. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions, Pergamon Press, London, 1974. See especially Ch. 2.

    Google Scholar 

  5. A. G. Milnes and D. L. Feucht, Heterojunctions and Metal-Semiconductor Junctions, Academic Press, New York. 1972/

    Google Scholar 

  6. J. Sakaki, L. L. Chang, R. Ludeke, C.-A. Chang, G. A. Sai-Halasz, and L. Esaki, Appl. Phys. Lett. 31, 211 (1977). See also L. L. Chang and L. Esaki, Surf. Sci. 98, 70 (1980).

    Article  CAS  Google Scholar 

  7. J. L. Shay, S. Wagner, and J. C. Phillips, Appl. Phys. Lett. 28, 31 (1976).

    Article  CAS  Google Scholar 

  8. For an excellent review, see Kraut et al., ref.[9] below.

    Google Scholar 

  9. E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).

    Article  CAS  Google Scholar 

  10. R. Dingle, in Festkorperprobleme/Advances in Solid State Physics, H. J. Queisser, editor, Vieweg, Braunschweig, 1975, Vol. 15, p. 21.

    Google Scholar 

  11. W. A. Harrison, E. A. Kraut, J. R. Waldrop, and R. W. Grant, Phys. Rev. B 18, 4402 (1978). See also ref.[l]

    Article  CAS  Google Scholar 

  12. J. R. Waldrop, S. P. Kowalczyk, R. W. Grant, E. A. Kraut, and D. L. Miller, J. Vac. Sci. Technol. 19, 573 (1981).

    Article  CAS  Google Scholar 

  13. M. J. Adams and A. Nussbaum, Solid-State Electron. 22, 783 (1979).

    Article  CAS  Google Scholar 

  14. O. von Roos, Solid-State Electron, 23, 1069 (1980).

    Article  Google Scholar 

  15. H. Kroemer, IEEE Electron Dev. Lett., EDL-4, 28 (1983).

    Google Scholar 

  16. A. Nussbaum, Solid-State Electron. 25, 1201 (1982).

    Article  CAS  Google Scholar 

  17. G. Margaritondo, A. D. Katnani, N. G. Stoffel, R. R. Daniels, and T.-X. Zhao, Solid-State Commun. 43, 163 (1982).

    Article  CAS  Google Scholar 

  18. W. A. Harrison, J. Vac. Sci. Technol. 14, 1016 (1977).

    Article  Google Scholar 

  19. See Sec. 10F of ref. [20].

    Google Scholar 

  20. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Freeman, San Francisco, 1980.

    Google Scholar 

  21. R. L. Anderson, Solid-State Electron. 5, 341 (1962).

    Article  CAS  Google Scholar 

  22. S. P. Kowalczyk, W. J. Schaffer, E. A. Kraut, and R. W. Grant, J. Vac. Sci. Technol. 20, 705 (1982).

    Article  CAS  Google Scholar 

  23. J. O. McCaldin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 36, 56 (1976).

    Article  CAS  Google Scholar 

  24. For a very “physical” discussion see Chs. 1-3 and Ch. 6 of Harrison, ref. [20].

    Google Scholar 

  25. W. R. Frensley and H. Kroemer, Phys. Rev. B 16, 2642 (1977).

    Article  CAS  Google Scholar 

  26. S. L. Wright, M. Inada, and H. Kroemer, J. Vac. Sci. Technol. 21, 534 (1982).

    Article  CAS  Google Scholar 

  27. H. Kroemer, K. J. Polasko, and S. L. Wright, Appl. Phys. Lett. 36, 763 (1980).

    Article  CAS  Google Scholar 

  28. S. P. Kowalczyk, E. A. Kraut, J. R. Waldrop, and R. W. Grant, J. Vac. Sci. Technol. 21, 482 (1982).

    Article  CAS  Google Scholar 

  29. S. Wagner, J. L. Shay, K. J. Bachmann, and E. Buehler, Appl. Phys. Lett. 26, 229 (1975).

    Article  CAS  Google Scholar 

  30. See, for example, W. Mönch, R. S. Bauer, H. Gant, and R. Murschall, J. Vac. Sci. Technol. 21, 498 (1982), and the references given there.

    Article  Google Scholar 

  31. See, for example, R. S. Bauer and J. C. Mikkelsen, J. Vac. Sci. Technol. 21, 491 (1982), which contains extensive references to earlier work.

    Article  CAS  Google Scholar 

  32. R. W. Grant, J. R. Waldrop, and E. A. Kraut, Phys. Rev. Lett. 40, 656 (1978); J. Vac. Sci. Technol. 15, 1451 (1978).

    Article  CAS  Google Scholar 

  33. H. Kroemer, CRC Crit. Revs. Solid State Sciences 5, 555 (1975).

    Google Scholar 

  34. W. R. Frensley and H. Kroemer, J. Vac. Sci. Technol. 13, 810 (1976).

    Article  CAS  Google Scholar 

  35. F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall, Englewood Cliffs, N. J. 1963.

    Google Scholar 

  36. It should perhaps be stated explicitly that the seven reference systems were in no way chosen to aid in a good or bad fit to one theory or another, but strictly on their inherent credibility.

    Google Scholar 

  37. W. R. Frensley, unpublished.

    Google Scholar 

  38. J. C. Phillips, J. Vac. Sci. Technol. 19, 545 (1981).

    Article  CAS  Google Scholar 

  39. G. W. Gobeli and F. G. Allen, Phys. Rev. 132, A245 (1965); also in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, editors, Academic Press, New York, 1966. See pp. 263ff.

    Article  Google Scholar 

  40. T. E. Fischer, F. G. Allen, and G. W. Gobeli, Phys. Rev. 163, 703 (1967).

    Article  CAS  Google Scholar 

  41. R. K. Swank, Phys. Rev. 142, 519 (1966).

    Article  Google Scholar 

  42. J. A. van Vechten, Phys. Rev. 187, 1007 (1969). This paper gives an extensive table of theoretical ionization energies, from which the electron affinities are easily obtained by subtracting the gap energies.

    Article  Google Scholar 

  43. T. Fischer, F. G. Allen, and G. W. Gobeli, Phys. Rev. 163, 701 (1967).

    Article  Google Scholar 

  44. J. W. Waldrop and R. W. Grant, Phys. Rev. Lett. 43, 1686 (1979).

    Article  CAS  Google Scholar 

  45. R. C. Miller, W. T. Tsang, and O. Munteanu, Appl. Phys. Lett. 41, 372 (1982).

    Google Scholar 

  46. G. A. Baraff, J. A. Applebaum, and D. R. Hamann, Phys. Rev. Lett. 38, 237 (1977); J. Vac. Sci. Technol. 14, 999 (1977).

    Article  CAS  Google Scholar 

  47. W. E. Pickett, S. G. Louie, and M. L. Cohen, Phys. Rev. B 17, 815 (1978).

    Article  CAS  Google Scholar 

  48. W. E. Pickett and M. L. Cohen, Phys. Rev. B 18, 939 (1978).

    Google Scholar 

  49. J. Ihm and M. L. Cohen, Phys. Rev. B 20, 720 (1979).

    Google Scholar 

  50. For an excellent review see M. J. Cohen, Adv. Electronics and Electron Physics 51, 1 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Kroemer, H. (1985). Theory of Heterojunctions: A Critical Review. In: Chang, L.L., Ploog, K. (eds) Molecular Beam Epitaxy and Heterostructures. NATO ASI Series, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5073-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5073-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8744-5

  • Online ISBN: 978-94-009-5073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics