Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 93))

Abstract

The use of electromagnetic stimulation of tissues has been increasing in the clinical fields. It is mainly used in the clinical cases when the classical, well-known methods fail or in order to accelerate the recovery of healing. The non-unions of bone fractures are the best application area at this time for the electromagnetic stimulations. Analyzing the electro-mechanical feedback systems of the tissue leads the way for how one can use electromagnetic stimulation in order to duplicate natural bioelectric signals. Although different artificial electromagnetic stimulation techniques could be equally effective in the treatment of the same pathological cases, they would differ in their tissue culture and cellular level responses. That is, the overall response of the tissue (healing of a non-union) would be the same for different stimuli but their cellular level reactions would be different. The tissue culture experiments and well controlled in vivo experiments will illuminate this point in the near future by bridging the overall response of the tissue to cellular level activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yasuda, I. Piezoelectricity of Living Bone. J. Kysto Pref. Univ. Med 53 (1953) 325.

    Google Scholar 

  2. Fukada, E. and I. Yasuda. On the Piezoelectric Effect of Bone. J. Phys. Soc. Japan. 12 (1957) 1158–1162.

    Article  Google Scholar 

  3. Bassett, C.A.L. Biophysical Principles Affecting Bone Structure, in The Biochemistry and Physiology of Bone, edited by G.H. Bourne, Second Ed., Vol. III (Academic Press, New York, 1971) pp. 1–76.

    Google Scholar 

  4. Eriksson, C. Electrical Properties of Bone, in The Biochemistry and Physiology of Bone, edited by G.H. Bourne,Secdnd Ed., Vol. IV, (Academic Press, New York, 1976) pp. 329–384.

    Google Scholar 

  5. Guzelsu, N. and H. Demiray. Electromechanical Properties and Related Models of Bone Tissues. Int. J. Engng. Sci. 12 (1979) 813–851.

    Article  Google Scholar 

  6. Guzelsu, N. Mechanoelectrical Effects in Biological Systems, in Electronic Conduction and Mechanoelectrical Transduction in Biological Materials, Edited by B. Lipinski (Marcel Dekker, Inc., New York, 1982) pp. 201–280.

    Google Scholar 

  7. Williams, W.S. Sources of Piezoelectricity in Tendon and Bone, in Critical Reviews in Bioengineering, edited by D. Fleming, Vol. 2 (CRC Press, Baco Raton, Florida, 1974) pp. 95–118.

    Google Scholar 

  8. Cignitti, M., F. Figura, M. Marchetti and A. Salleo. Electro-kinetic Effects in Mechanoelectrical Phenomenology of the Bone, Arch Fisol. 68 (1970/71) 232–249.

    Google Scholar 

  9. Johnson, M.W., D.A. Chakkalakal, R.A. Harper and J.L. Katz. Comparison of the Electromechanical Effects in Wet and Dry Bone. J. Biomechanics 13 (1980) 437–442.

    Article  Google Scholar 

  10. Williams, W.S. Piezoelectric Effects in Biological Materials. Ferro-electrics 41 (1982) 225–246.

    Google Scholar 

  11. Pienkowski, D. and S.R. Pollack. The Origin of Stress- Generated Potentials in Fluid-Saturated Bone. J. Orthopaedic Resch. 1 (1983) 13–41.

    Article  Google Scholar 

  12. Guzelsu, N. and J. Donofrio. Particle Electrophoresis of Compact Bone Tissue. J. Bioelectricity. 2 (1983), 187–196.

    Google Scholar 

  13. . Anderson, J.C. and Eriksson C., Electrical Properties of Wet Collagen, Nature. 218 (1968) 166–168.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson, J.C. and Eriksson, C. Piezoelectric Properties of Dry and Wet Bone. Nature, 127 (1970) 491–492.

    Article  Google Scholar 

  15. Gustavson, K.H. The Chemistry and Reactivity of Collagen (Academic Press, New York, 1956).

    Google Scholar 

  16. Hastings, G.W., M.A. ElMessiery and S. Rakowski. Mechanoelectrical Properties of Bone. Biomaterials, 2 (1981) 225–233.

    Article  PubMed  CAS  Google Scholar 

  17. Shamos, M.H., L.S. Lavine and M.I. Shamos. Piezoelectric Effect in Bone. Nature, 197 (1963) 81.

    Article  PubMed  CAS  Google Scholar 

  18. Bassett, C.A.L. Electrical Effects in Bone. Scientific American. 213 (1965) 18–25.

    Article  PubMed  CAS  Google Scholar 

  19. Guzelsu, N. A Piezoelectric Model for Dry Bone Tissue. J. Biomechanics 11 (1978) 257–267.

    Article  CAS  Google Scholar 

  20. Yasuda, I., Fundamental Aspects of Fracture Treatment. Clin. Orthop. Related Research, 124 (1977) 5–8.

    Google Scholar 

  21. Yasuda, I. Electrical Callus and Callus Formation by Electret. Clin. Orthop. Related Research, 124 (1977) 53–56.

    Google Scholar 

  22. Piekarski, K., D. Demetriades and A. Mackenzie. Osteogentic Stimulation by Externally Applied D.C. Current. Acta. Orthop. Scand. 49 (1978) 113–120.

    Article  PubMed  CAS  Google Scholar 

  23. Friedenberg, Z.B., B.I. Smolenski, B.W. Pearl and C.T. Brighton. Bone Reaction to Varying Amounts of Direct Current. Surg. Gynec. and Obstet. 131 (1970) 894–899.

    CAS  Google Scholar 

  24. Liboff, A.R. and R.A. Rinaldi. Electrically Mediated Growth Mechanism in Living Systems. Annals New York Acad. Sci., Vol. 238 (1974).

    Google Scholar 

  25. Burny, F., E. Herbst, and M. Hinsenkamp. Electric Stimulation of Bone Growth and Repair ( Springer-Verlag, Berlin, 1978).

    Google Scholar 

  26. Brighton, C.T., Bioelectric Effects on Bone and Cartilage. (Guest Ed.) Clinic Orthop. Related Res. 124 (1977).

    Google Scholar 

  27. Brighton, C.T., J. Black and S. Pollack. Electrical Properties of Bone and Cartilage (Editors) ( Grune and Stratton, New York, 1979).

    Google Scholar 

  28. Watson, J. The Electrical Stimulation of Bone Healing. Proceeding IEEE 67 (1979) 1339–1352.

    Article  Google Scholar 

  29. Spadaro, J.A. Electrically Stimulated Bone Growth in Animals and Man Clin. Orthop. Related Res., 122 (1977) 325–332.

    Google Scholar 

  30. Paterson, D.C., G.N. Lewis and C.A. Cass. Treatment of Delayed Union and Non-union with an Implanted Direct Current Stimulator. Clin. Orthop. Related Res., 148 (1980) 117–128.

    Google Scholar 

  31. Paterson, D.C., G.N. Lewis and C.A. Cass. Treatment of Congenital Pseudarthrosis of the Tibia with Direct Current Stimulation. Clin. Orthop. Related Research. 148 (1980) 129–135.

    Google Scholar 

  32. Brighton, C.T., J. Black, Z.B. Friedenberg, J.L. Esterhai, L.J. Day and J.F. Connolly. A Multicenter Study of the Treatment of Non-Union with Constant Direct Current. J. Bone Joint Surgery. 63-A (1981) 2–13.

    Google Scholar 

  33. Bassett, C.A.L., S.N. Mitchell and S.R. Gaston. Treatment of Ununited Tibial Diaphyseal Fractures with Pulsing Electromagnetic Fields. J. Bone Joint Surgery. 63-A, (1981) 511–523.

    Google Scholar 

  34. Watson, J. and E.M. Downes. The Application of Pulsed Magnetic Fields to the Stimulation of Bone Healing in Humans. Japanese J. Applied Physics. 17 (1978) 215–217.

    Article  Google Scholar 

  35. Kraus Von, W. and F. Lechner. Die Heilung von Pseudarthrosen und Spontanfrakturen durch strukturbildende Electro dynamische Potentiale. Munch med. Wschr. 114 (1972) 1814–1819.

    PubMed  CAS  Google Scholar 

  36. Connolly, J.F. Clinical Applications of Bioelectrical Effects (Guest Ed) Clin. Orthop. Related Research 161 (1981).

    Google Scholar 

  37. Brighton, C.T., G.B. Pfeffer and S.R. Pollack. In vivo Growth Plate Stimulation in Various Capacitively Coupled Electrical Fields. J. Orthopaedic Research. 1 (1983) 42–49.

    Article  CAS  Google Scholar 

  38. Yasuda, I. Mechanical and Electrical Callus. Annals. New York Acad. Sci. 238 (1974) 457–465.

    Article  CAS  Google Scholar 

  39. Spadaro, J.A. Bioelectric Stimulation of Bone Formation: Methods, Models and Mechanism. J. Bioelectricity. 1 (1982) 99–128.

    Google Scholar 

  40. Herbst, E., Electrical Stimulation Bone Growth and Repair in F. Burny, E. Herbst and M. Hinsenkamp, ed., Electric Stimulation of Bone Growth and Repair. (SpringerVerlag, Berlin, 1978) p. 1–13.

    Google Scholar 

  41. Friedenberg, Z.B., P.G. Roberts, N.H. Didizian and C.T. Brighton. Stimulation of Fracture Healing by Direct Current in the Rabbit Fibula. J. Bone Joint Surgery. 53-A (1971) 1400–1408.

    Google Scholar 

  42. Bassett, C.A.L., R.J. Pawluk and R.O. Becker. Effects of Electric Currents on Bone in vivo. Nature, 204 (1964) 652–654.

    Article  PubMed  CAS  Google Scholar 

  43. Minkin, C., B.R. Poulton and W.H. Hoover. The Effect of Direct Current on Bone. Clin. Orthop. Related Research., 57 (1968) 303–309.

    CAS  Google Scholar 

  44. Lavine, L.S., I. Lustrin and M.H. Shamos. Experimental Model for Studying the Effect of Electric Current on Bone in vivo. Nature (1969) 1112–1113.

    Google Scholar 

  45. O’Connor, B.T., H.M. Charton, J.D. Currey, D.R.S. Kirby and S. Woods. Effects of Electric Current on Bone in vivo. Nature, 222 (1969) 162–163.

    Article  PubMed  Google Scholar 

  46. Lavine, L.S., I. Lustrin, M.H. Shamos and M.L. Mass. The Influence of Electric Current on Bone Regeneration in vivo. Acta. Orthop. Scandinav. 42 (1971) 305–314.

    Article  CAS  Google Scholar 

  47. Friedenberg, Z.B., M.C. Harlow and C.T. Brighton. Healing of Nonunion of the Medial Mallolus by Means of Direct Current. A Case Report. J. Trauma 11 (1971) 883–885.

    CAS  Google Scholar 

  48. Friedenberg, Z.B. and C.T. Brighton. Electrical Fracture Healing. Annals New York Acad. Sci., 238 (1974) 564–574.

    Article  CAS  Google Scholar 

  49. Klapper, L. and R.E. Stallard. Mechanism of Electric Stimulation of Bone Formation. Annals New York Acad. Sci., 238 (1974) 530–542.

    Article  CAS  Google Scholar 

  50. Friedenberg, Z.B., L.M. Zemsky, R.P. Pollis and C.T. Brighton. The Response of Non-Traumatized Bone to Direct Current. J. Bone Joint Surgery. 56-A (1974) 1023–1030.

    Google Scholar 

  51. Connolly, J.F., J. Ortiz, R.R. Price and R.J. Bayuzick. The Effect of Electrical Simulation on the Biophysical Properties of Fracture Healing. Annals New York Acad. Sci., 238 (1974) 519–529.

    Article  CAS  Google Scholar 

  52. Brighton, C.T, Z.B. Friedenberg, L.M. Zemsky and P.R. Pollis. Direct-Current Stimulation of Non-Union and Congenital Pseud-arthrosis. J. Bone Joint Surgery. 57-A (1975) 368–377.

    Google Scholar 

  53. Harris, W.H., B.J.L. Mayen, E.L. Thrasher, L.A. Davis, R.H. Cobolen, D.A. MacKenzie and J.K. Cywinski. Differential Response to Electrical Stimulation. Clin. Orthop. Related Res. 124(1977)31–40.

    Google Scholar 

  54. Weigert, M. and C. Werhahn. The Influence of Electric Potentials on Plated Bones. Clin. Orthop. Related Res., 124 (1977) 20–30.

    Google Scholar 

  55. Jacobs, J.D. and L.A. Norton. Electrical Stimulation of Osteogenesis in Periodontal Defects. Clin. Orthop. Related Res. 124 (1977) 41–52.

    Google Scholar 

  56. Stan, S., J.C. Mulier, W. Sansen and P. DeWaele. Effect of Direct Current on the Healing of Fractures, in Electric Stimulation of Bone Growth and Repair, edited by F. Burny, H. Herbst and M. Hinsenkamp (Springer-Verlag, Berlin, 1978) pp. 47–54.

    Google Scholar 

  57. vonSatzger, G. and E. Herbst. Electrical Stimulation of Osteogenesis, in Electric Stimulation of Bone Growth and Repair, edited by F. Burny, H. Herbst and M. Hinsenkamp (Springer-Verlag, Berlin, 1978) pp. 55–60.

    Google Scholar 

  58. Brighton, C.T., Z.B. Friedenberg and J. Black. Evaluation of the use of Constant Direct Current in the Treatment of Nonunion, in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack (Grune-Stratton, New York, 1979) pp. 519–547.

    Google Scholar 

  59. Hassler, C.R., K.D. Cummings, L.C. Clark, E.F. Rybicki and R.B. Diegle. Augmentation of Bone Healing via Electrical Stimuli, in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack, (Grune-Stratton, New York, 1979) pp. 155–168.

    Google Scholar 

  60. Kenner, G.H., J.W. Precup, E.W. Gabrielson, W.S. Williams and J.B. Park. Electrical Modification of Disue Osteoporosis Using Constant and Pulsed Stimulation, in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack (Grune-Stratton, New York, 1979) pp. 181–187.

    Google Scholar 

  61. Inoue, S., T. Ohashi, E. Fukada and T. Ashihara. Electric Stimulation of Osteogenesis in the Rat: Amperage of Three Different Stimulation Methods, in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack (Grune-Stratton, New York, 1979) pp. 199–213.

    Google Scholar 

  62. Treharne, R.W., C.T. Brighton, E. Korostoff and S.R. Pollack. Application of Direct, Pulsed and SGP-Shaped Currents to in-vitro fetal Rat Tibiae, in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack (Grune-Stratton, New York, 1979) pp. 169–180.

    Google Scholar 

  63. Zichner, L. Repair of Nonunions by Electrically Pulsed Current Stimulation. Clinical Orthop. Related Res. 161 (1981) 115–121.

    Google Scholar 

  64. Brighton, C.T., Z.B. Friedenberg, J. Black, J.L. Esterhai, J.E. Mitchell and F. Montique. Electrically Induced Osteogenesis: Relationship between Charge, Current Density and the Amount of Bone Formed. Clinical Orthop. Related Res. 161 (1981) 122–132.

    Google Scholar 

  65. Jacobs, R.R., U. Luethi, R.T. Duelard and S.M. Perren. Electrical Stimulation of Experimental Nonunions. Clin. Orthop. Related Res. 161 (1981) 146–153.

    Google Scholar 

  66. Spadaro, J.A. Electrically Enhanced Osteogenesis at Various Metal Cathodes. J. Biomedical Mat. Re. 16 (1982) 861–873.

    Article  CAS  Google Scholar 

  67. Jorgensen, T.E. The Effect of Electric Current on the Healing Time of Crural Fractures. Acta Orthop. Scandinav. 43 (1972) 421–437.

    Article  CAS  Google Scholar 

  68. Norton, L.A., C.A. Rodan and L.A. Bourret. Cyclic AMP Fluctuation in Bone Growth in Electrical Fields. J. Dent. Res., 55B (1976) 215.

    Google Scholar 

  69. Rodan, G.A., L.A. Bourret and L.A. Norton. DNA Synthesis in Cartilage Cells is Stimulated by Electric Fields. Science, 199 (1978) 690–692.

    Article  PubMed  CAS  Google Scholar 

  70. Landa, V.A. and B.K. Baranow. On the Effect of Impulse Electrical Current on Reparative Regeneration of the Bone Tissue. Orthop. Tram. Protest. No. 10, (1976) 55–59.

    Google Scholar 

  71. Bassett, C.A.L. and I. Herrmann. Influence of Oxygen Concentration and Mechanical Factors on Differentiation of Connective Tissues in vitro, Nature, 190 (1961) 460–461.

    Article  PubMed  CAS  Google Scholar 

  72. . Coulson, D.B., A.B. Ferguson and R.C. Diehl. Effect of Hyperbaric Oxygen on the Healing Femur of the Rat. Orthop. Surgery. 17 (1966) 449–450.

    CAS  Google Scholar 

  73. Brighton, C.T., R.D. Ray, L.W. Sable and K.E. Kuettner. In vitro Epiphyseal-Plate Growth in Various Oxygen Tensions. J. Bone Joint Surgery. 51-A (1969) 1383–1396.

    Google Scholar 

  74. Brighton, C.T. and R.B. Heppenstall. Oxygen Tension in Zones of the Epiphyseal Plate the Metaphysis and Diaphysis. J. Bone Joint Surgery, 53-A (1971) 719–728.

    Google Scholar 

  75. Brighton, C.T. and A.G. Krebs. Oxygen Tension of Healing Fractures in the Rabbit. J. Bone Joint Surgery, 54-A (1972) 323–332.

    Google Scholar 

  76. Heppenstall, R.B., G. Grislis and T.K. Hunt. Tissue Gas Tensions and Oxygen Consumption in Healing Bone Defects. Clin. Orthop. Related Research. 106 (1975) 357–365.

    Article  Google Scholar 

  77. Brighton, C.T.,#x2019; S. Adler, J. Black, N. Itada and Z.B. Friedenbrg. Cathodic Oxygen Consumption and Electrically Induced Osteogenesis. Clin. Orthop. Related Research. 107 (1975) 277–282.

    Article  CAS  Google Scholar 

  78. Brighton, C.T., S.R. Pollack and R.E. Windsor. Stimulation of Fracture Healing by a Capacitively Coupled Electric Field in the Rabbit FIgula. Transaction-27th Annual Meeting Orthop. Resch. Soc. 6 (1981) 93.

    Google Scholar 

  79. Norton, L.A. In vivo Bone Growth in a Controlled Electric Field. Annals New York Acad. Sci., 238 (1979) 466–477.

    Article  Google Scholar 

  80. Norton, L.A., G.A. Rodan and L.A. Bourret. Epiphyseal Cartilage cAMP Changes Produced by Electrical and Mechanical Perturbations. Clin. Orthop. Related Research. 124 (1977) 59–68.

    CAS  Google Scholar 

  81. Marino, A.A., J.M. Cullen, M. Reichmanis and R.O. Becker. Fracture Healing in Rats Exposed to Extremely Low Frequency Electric Fields. Clin. Orthop. Related Research. 145 (1979) 239–244.

    Google Scholar 

  82. Brighton, C.T. and S.R. Pollack. Treatment of Non-Union with a Capacitively Coupled Electrical Field: Preliminary Findings. Transactions of the Third Annual Meeting of BRAGS, Vol. Ill (1983).

    Google Scholar 

  83. Brighton, C.T., W.J. Hozack and S.R. Pollack. Fracture Healing in Response to a Time-Varying Capacitively Coupled Electrical Field in the Rabbit Fibula. Transactions Third Annual Meeting of BRAGS. Vol. Ill, (1983) 46.

    Google Scholar 

  84. McElhaney, J.H., R. Stalnaker and R. Bullard. Electric Fields and Bone Loss of Disuse. J. Biomechanics, 1 (1968) 47–52.

    Article  CAS  Google Scholar 

  85. Martin, R.B. and W. Gutman. The Effect of Electric Fields on Osteoporosis of Disuse. Calcif. Tiss. Res. 25 (1978), 23–27.

    Article  CAS  Google Scholar 

  86. Bassett, C.A.L. and I. Herrmann. The Effect of Electrostatic Fields on Macromolecular Synthesis by Fibroblasts in vitro. J. Cell Biology, 39 (1968) 9A.

    Google Scholar 

  87. Rodan, G.A., L.A. Bouxret, and L.A. Norton. DNA Synthesis in Cartilage Cells is Stimulated by Oscillating Electric Fields, Science, 199 (1978) 690–692.

    Article  PubMed  CAS  Google Scholar 

  88. Perlman, M.M. Electrets Charge Storage and Transport in Dielectrics (The Electrochemical Soc., Princeton, NJ, 1973).

    Google Scholar 

  89. Sessler, G.M. (Ed.) Electrets. Topics in Applied Physics. Vol. 33 ( Springer-Verlag, Berlin, 1980).

    Google Scholar 

  90. Fukada, E., T. Takamatsu and I. Yasuda. Callus Formation by Electret, Japan J. Appl. Phys., 14 (1975) 2079–2080.

    Google Scholar 

  91. Inoue, S., T. Ohashi, I. Yasuda and E. Fukada. Electret Induced Callus Formation in the Rat. Clin. Orthop. Related Research. ..124 (1977) 57–58.

    Google Scholar 

  92. Wangsness, R.K. Electromagnetic Fields ( John Wiley and Sons, New York, 1979). p. 297.

    Google Scholar 

  93. Bassett, C.A.L., R.J. Pawluk and A.A. Pilla. Augmentation of Bone Repair by Inductively Coupled Electromagnetic Fields. Science, 184 (1974) 575–577.

    Article  PubMed  CAS  Google Scholar 

  94. Bassett, C.A.L., R.J. Pawluk and A.A. Pilla. Acceleration of Fracture Repair by Electromagnetic Fields. A surgically Noninvasive Method. Annals New York Acad. Sci., 238 (1974) 242–262.

    Article  CAS  Google Scholar 

  95. Bassett, C.A.L., A.A. Pilla and R.J. Pawluk. A Non-Operating Salvage of Surgically-Resistant Pseudarthroses and Non–unions by Pulsing Electromagnetic Fields: A Preliminary Report. Clin. Orthop. Related Res. 124 (1977) 128–143.

    Google Scholar 

  96. Bassett, C.A.L., A.A. Pilla, S.N. Mitchell and L. Norton. Repair of non-unions by pulsing electromagnetic fields. Acta Orthopedic Belgica. 44 (1978) 706–724.

    CAS  Google Scholar 

  97. Bassett, C.A.L. Pulsing Electromagnetic Fields — A New Method to Modify Cell Behavior in Calcified and Non-calcified Tissues. Calcif. Tissue Int. 34 (1982) 1–8.

    Article  PubMed  CAS  Google Scholar 

  98. Bassett, L.S., G. Tzitzikalakis, R.J. Pawluck and C.A.L. Bassett. Prevention of Disuse Osteoporosis in the Rat by Means of Pulsing Electromagnetic Fields in Electrical Properties of Bone and Cartilage, edited by C.T. Brighton, J. Black and S.R. Pollack (Grune-Stratton, New York, 1979) pp. 311–332.

    Google Scholar 

  99. Mulier, J.C. and F. Spaas. Out-Patient Treatment of Surgically Resistant Non–unions by induced Pulsing Current-Clinical Results. Arch. Orthop. Traumat. Surg., 97 (1980) 293–297.

    Article  CAS  Google Scholar 

  100. Heckman, J.D., A.J. Ingram, R.D. Loyd, J.V. Luck and P.W. Mayer. Nonunion Treatment with Pulsed Electromagnetic Fields. Clin. Orthbp. Related Res. 161 (1981) 58–66.

    Google Scholar 

  101. Watson, J. and E.M. Downes. Clinical Aspects of the Stimulation of Bone Healing Using Electrical Phenomena, Med. and Biol. Eng. and Comput. 17 (1979) 161–169.

    Article  CAS  Google Scholar 

  102. Watson, J. and E.M. Downes. Light-Weight Battery-Operable Orthopaedic Stimulator for the Treatment of Long-bone Nonunions Using Pulsed Magnetic Fields. Med. and Biol. Eng. and Comput. 21 (1983) 509–510.

    Article  CAS  Google Scholar 

  103. Watson, J. and E. M. Downe’s. A Battery-operated portable Orthopaedic Stimulator. Transactions Third Annual Meeting of BRAGS III,. (1983) 55.

    Google Scholar 

  104. DeHaas, W.G., M.A. Lazarovici and D.M. Morrison. The Effect of Low Frequency Magnetic Fields on the Healing of the Osteotomized Rabbit Radius. Clin. Orthop. Related Research. 145 (1979) 245–251.

    Google Scholar 

  105. Lechner, F. Die Behandlung von Knochenbruchheilungsstorungen mit Electromagnetischen Potentialen, Mschr. Unfallheilk, 77 (1974)245–251.

    CAS  Google Scholar 

  106. Lechner, F. and R. Ascherl. Experiences and Results of the Electrodynamic Fields Treatment in uses of Pseudarthroses and Delayed Bone Repair. Acta Orthop. Belgica, 44 (1978) 699–705.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Güzelsu, N. (1985). Electromechanical Properties and Electromagnetic Stimulation of Bone. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (eds) Biomechanics of Normal and Pathological Human Articulating Joints. NATO ASI Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5117-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5117-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8762-9

  • Online ISBN: 978-94-009-5117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics