Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 94))

Abstract

The subject of predicting and evaluating the influence of dynamic effect in materials appears to be a subject of increasing awareness and importance to the scientific community. In Civil Engineering Technology this problem is considered as a most important and timely topic particularly as it relates to the establishment of appropriate design methodology associated with masonry and concrete material structures of both the reinforced and non-reinforced types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atchley, B. L., and Furr, H. L., Strength and Energy Absorption Capabilities of Plain Concrete Under Dynamic and Static Loading, ACI Journal November (1967) 745–756.

    Google Scholar 

  2. Bazant, Z. P., Endochronic Inelasticity and Incremental Plasticity, International Journal of Solids and Structures 16 no. 9, Sept. (1978), 151–165.

    Google Scholar 

  3. Bazant, Z. P., A New Approach to Inelasticity and Failure of Concrete, Sand, and Rock: Endochronic Theory Proceedings of the 11th Annual Meeting, Society of Engineering Science, G. J. Dvorak, ed., ( Duke University, Durham, NC, 1876 ), pp. 158–159.

    Google Scholar 

  4. Bhargave, J., and Rehnstrom, A., Dynamic Strength of Polymer Modified and Fiber-Reinforced Concretes, Cement and Concrete Research 7 (1977), 199–207.

    Article  Google Scholar 

  5. Bicanic, N. and Zienkiewicz, O. C., Constitutive Model for Concrete Under Dynamic Loading, Earthquake Engineering and Structural Dynamics 1 (1983), 689–710.

    Article  Google Scholar 

  6. Birkimer, D. L. and Lindemann, R., Dynamic Tensile Strength of Concrete Materials, ACI, Journal, Proc. 68 (1971), 47–49 and Supplement No. 68–8 (1971).

    Google Scholar 

  7. Buyukozturk, O. and Tseng, T. M., Concrete in Biaxial Cyclic Compression Journal of Structural Engineering, ASCE, 110 no. 3, Mar. (1984), 461476.

    Article  Google Scholar 

  8. Chen, A. C. T. and Chen, W. F., Constitutive Equations and Punch-Indentation of Concrete, Journal of Engineering Mechanics Division, ASCE, 101 no. EM6, Dec. (1975), 889–906.

    Google Scholar 

  9. Chen, W. F. and Suzuhi, H., Constitutive Models for Concrete, presented at the October 16–20, 1978, ASCE Annual Convention and Exposition and Continuing Education Program, Chicago, Illinois.

    Google Scholar 

  10. Chen, W. F. and Ting, E. C., Constitutive Models for Concrete Structures, Journal of Engineering Mechanics Division, ASCE, 106 no. EM 1, Feb. (1980), 1–19.

    Google Scholar 

  11. Goldsmith, W. and Austin, C. F., Some Dynamic Characteristics of Rocks, Stress Waves in Anelastic Solids, (Springer, Berlin, Germany, 1964 ), p. 277.

    Google Scholar 

  12. Goldsmith, W., Austin, C. F., Wang, C. C. and Finnegan, S., Stress Waves in Igneous Rocks, Journal of Geophysical Research 71, no. 8 (1966), 2055.

    ADS  Google Scholar 

  13. Goldsmith, W., Kenner, V. H. and Ricketts, E. E., Dynamic Loading of Several Concrete-Like Mixtures, Proc. ASCE, J. Structural Division, 94, ST7 (1968), 1803–1827.

    Google Scholar 

  14. Goldsmith, W., Polivka, M., and Yang, T., Dynamic Behavior of Concrete Experimental Mechanics, Feb. (1966), 65–79.

    Google Scholar 

  15. Green, H., Impact Strength of Concrete, Institution of Civil Engineers, Proc. 28 (1964), 361–396.

    Google Scholar 

  16. Gregson, V. G., Jr., A Shock Wave Study of Fondu-Fyre WA-1 and a Concrete, ( General Motors Materials and Structures Laboratory, Report MSL, 1971 ).

    Google Scholar 

  17. Griner, G. R., Dynamic Properties of Concrete Master’s Thesis, University of Florida (1974). Also Griner, G. R., Sierakowski, R. L., and Ross, C. A., Dynamic Properties of Concrete Under Impact Loading Bulletin No. 45, (The Shock and Vibration Information Center, NRL, Washington, D. C., June 1975 ).

    Google Scholar 

  18. Griner, G. R., Sierakowski, R. L. and Ross, C. A., Dynamic Properties of Concrete Under Impact Loading, Shock and Vibration Bulletin Part 5, (1975), 131–142.

    Google Scholar 

  19. Hoff, G. C., Selected Bibliography on Fiber-Reinforced Cement and Concrete, Supplement No. 2, Miscellaneous paper C-76-6, (U. S. Army Waterways Experiment Station, Vicksburg, Miss, 1979 ).

    Google Scholar 

  20. Hughes, B. P. and Gregory, R., Concrete Subjected to High Rates of Loading in Compression, Magazine of Concrete Research 24, (1972), 25–36.

    Google Scholar 

  21. Hughes, B. P. and Watson, A. J., Compressive Strength and Ultimate Strain of Concrete Under Impact Loading, Magazine of Concrete Research 30, (1978), 189–199.

    Article  Google Scholar 

  22. Kormeling, J. A., Zielinski, A. J., and Reinhardt, H. W., Experiments on Concrete Under Single and Repeated Impact Loading, Report No. 5-80-3, ( Delft University of Technology, Stevin Laboratory, May 1980 ).

    Google Scholar 

  23. Landon, J. W. and Ouinney, H., Experiments with the Hopkinson Pressure Bar., Proc. Roy. Soc. A., 103, (1923), 622.

    Article  ADS  Google Scholar 

  24. McHenry, D. and Shideler, J. J., Review of Data on Effect of Speed in Mechanical Testing of Concrete, ASTM STP 185, (1956), 72–82.

    Google Scholar 

  25. Ngo, D. and Scordelis, A. C., Finite Element Analysis of Reinforced Concrete Structures, ACI Journal 64 no. 3, Mar. (1967).

    Google Scholar 

  26. Nilsson, L., Impact Loading of Concrete Structures, Publication No. 79, Department of Structural Mechanics, Chalmers University of Technology, (1979).

    Google Scholar 

  27. Perzyna, P., Fundamental Problems in Viscoplasticity, Advances in Applied Mechanics 9, (1966), 263–377.

    Article  Google Scholar 

  28. Phillips, D. V. and Zienkiewicz, O. C., Finite Element Nonlinear Analysis of Concrete Structures, Proceedings, Institute of Civil Engineers, 61 part 2, Mar. (1976), 59–88.

    Article  Google Scholar 

  29. Popovics, S. A., Numerical Approach to the Complete Stress-Strain Curve of Concrete Cement and Concrete Research 3 (1973), 583–599.

    Google Scholar 

  30. Pozzo, E., Rheological Model of Concrete in the Dynamic Field, Mecanica, June (1970) 143–158.

    Google Scholar 

  31. Read, H. E. and Maiden, C. J., The Dynamic Behavior of Concrete, (Topical Report 3 SR-707, Systems, Science and Software, La Jolla, CA, August, 1971 ).

    Google Scholar 

  32. Seabold, R. H., Dynamic Shear Strength of Reinforced Concrete Beams — Part III, Tech. Report R-695, Naval Civil Engineering Lab., Port Hueneme, CA, Sept. (1970).

    Google Scholar 

  33. Sierakowski, R. L., Malvern, L. E., Collins, J. A., Milton, K. E. and Ross, C. A., Penetrator Impact Studies of Soil /Concrete, Final Report, U. S. AFOSR Grant No. 77–3209 and AFAL TR-78-9, University of Florida, Gainesville, FL, November 30 (1977), 109–110.

    Google Scholar 

  34. Sierakowski, R. L., Malvern, L. E. and Doddington, H., Hopkinson Bar Tests of Three-Fourths Inch Diameter Concrete Specimens, Unpublished (1981).

    Google Scholar 

  35. Suaris, W. and Shah, S. P., Properties of Concrete Subjected to Impact, ASCE Jounal of Structural Engineering, v. 109, July (1983), pp 1727–1741.

    Article  Google Scholar 

  36. Suaris, W., and Shah, S. P., Impact Test Methods for Fibre Reinforced Concrete, ACI Special Publication, 1984,

    Google Scholar 

  37. Takeda, J., Tachikawa, J., and Fujimoto, K., Mechanical Behavior of Concrete Under Higher Rate of Loading than in the Static Test, Proceedings of the Symposium on the Mechanical Behavior of Materials, Kyoto, August, 2124, Vol. II (1974), 479–486.

    Google Scholar 

  38. Tang, T., Malvern, L. E., Jenkins, D. A., Dynamic Compressive Testing of Concrete and Mortar, Proceedings Fifth Engineering Mechanics Division, ASCE, Laramie, WY, August 1–3, 1984, pp. 663–666.

    Google Scholar 

  39. Valanis, K. C., A Theory of Viscoplasticity Without a Yield Surface, Part I — General Theory, and Part II — Application to Mechanical Behavior of Metals, Archives of Mechanics 23, no. 4, (1971), 517–551.

    MathSciNet  MATH  Google Scholar 

  40. Valanis, K. C. and Lee, C. F., Some Recent Development of the Endochronic Theory with Applications, Nuclear Engineering and Design 69, (1982) 327–344.

    Article  Google Scholar 

  41. Watstein, D., Effect of Straining Rate on the Compressive Strength and Elastic Properties of Concrete, ACI Proc. 47, no. 52, April (1953), 729–744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Sierakowski, R.L. (1985). Dynamic Effect in Concrete Materials. In: Shah, S.P. (eds) Application of Fracture Mechanics to Cementitious Composites. NATO ASI Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5121-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5121-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8764-3

  • Online ISBN: 978-94-009-5121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics