Skip to main content

Mechanistic Studies on the Mode of Action of Methane Monooxygenase

  • Conference paper
Gas Enzymology

Abstract

Consideration is given here to our current understanding of how the enzyme methane monooxygenase effects the O2- and NADH- dependent oxidation of methane. Physico-chemical analysis of the soluble three-protein enzyme complex from Methylococcus capsulatus (Bath) has indicated that protein C (an iron-sulphur-flavoprotein) passes reducing equivalents from NADH to protein A which then binds the substrate molecule methane. Oxidation of the methane proceeds in the presence of protein B to produce methanol. Kinetic measurements suggest that the rate limiting step in the oxidation is oxidation of the bound substrate rather than the supply of electrons to the enzyme-bound substrate. E.S.R. measurements also suggest that the active site protein of A is, by analogy with ribonucleotide reductase and methaemerythrin, an antiferromagnetically coupled pair of high spin Fe(III) atoms with a bridging oxo-group. Mechanistic studies have indicated that oxidation of aromatic compounds proceeds via arene oxide intermediates implying direct oxygen insertion into the substrate. However the mechanism of oxidation of aliphatic hydrocarbons is still unclear, with evidence for both concerted and two step reactions, although the rate limiting step appears to be C−H bond breakage. Following the recent demonstration that some methanotrophs can express two forms of monooxygenase, substrate specificity data from a variety of sources has been reassessed, enabling comparison of the two enzyme systems and proposals concerning the topography of the active site of the soluble enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Best, D. J. & Higgins, I. J. (1983) Methane-utilising organisms (Methanotrophs) as biocatalysts. Top. Enz. Ferm. Biotech. 7, 38–75.

    CAS  Google Scholar 

  • Cameron, S. (1982) Wood alcohol has come a long way. Financial Times, London, March 3.

    Google Scholar 

  • Colby, J., Dalton, H. & Whittenbury, R. (1975) An improved assay for bacterial methane monooxygenase: some properties of the enzyme from Methylomonas methanica. Biochem. J. 151, 459–462.

    CAS  Google Scholar 

  • Colby, J. & Dalton, H. (1976) Some properties of a soluble methane monooxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157, 495–497.

    CAS  Google Scholar 

  • Colby, J. & Dalton, H. (1978) Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171, 903–908.

    Google Scholar 

  • Colby, J. & Dalton, H. (1979) Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (component C) from Methylococcus capsulatus (Bath) Biochem. J. 177, 903–908.

    CAS  Google Scholar 

  • Colby, J., Stirling, D. I. & Dalton, H. (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165, 395–402.

    CAS  Google Scholar 

  • Dalton, H. (1980) Oxidation of hydrocarbons by methane monooxygenase from a variety of microbes. Adv. Appl. Microbiol. 26, 71–87.

    Article  CAS  Google Scholar 

  • Dalton, H., Golding, B. T., Waters, B. W., Higgins, R. & Taylor, J. A. (1981) Oxidations of cyclopropane, methylcyclopropane, and arenes with the mono-oxygenase system from Methylococcus capsulatus. J. C. S. Chem. Comm. 189, 482–483.

    Article  Google Scholar 

  • Dalton, H. & Leak, D. J. (1984) Methane oxidation by microorganisms. In: Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects. Ed. by R. K. Poole & C. S. Dow. Academic Press. New York.

    Google Scholar 

  • Dalton, H., Prior, S. D., Leak, D. J. & Stanley, S. H. (1984) Regulation and control of methane monooxygenase. In Microbial Growth on C 1 Compounds. Proceedings of the 4th International Symposium. Ed. by R. L. Crawford & R. S. Hanson. American Society for Microbiology.

    Google Scholar 

  • Daly, J. W., Jerina, D. M. & Witkop, B. (1972) Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28, 1129–1149.

    Article  CAS  Google Scholar 

  • Ferenci, T. (1974) Carbon monoxide-stimulated respiration in methane-utilizing bacteria. FEBS Lett. 41, 94–98.

    Article  CAS  Google Scholar 

  • Foo, E. L. & Heden, C. C. (1977) Is a biocatalytic production of methanol a practical proposition? In: Microbial Energy Conversion, p. 267. Ed. by H G. Schlegel & J. Barnea. Pergamon Press, New York.

    Google Scholar 

  • Ghisalba, O. and Heinzer, F. (1982) Methanol from methane — a hypothetical microbial conversion compared with the chemical process. Experientia 38, 218–223.

    Article  CAS  Google Scholar 

  • Hamilton, G. A. (1974) Chemical models and mechanisms for oxygenases In Molecular Mechanisms of Oxygen Activation. Ed. by O. Hayaishi. Academic Press, New York and London, p405–451.

    Google Scholar 

  • Higgins, I. J., Best, D. J. & Hammond, R. C. (1980) New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286, 561–564.

    Article  CAS  Google Scholar 

  • Higgins, I. J., Hammond, R. C., Sariaslani, F. S., Best, D., Davies, M. M., Tryhorn, S. E. and Taylor, F. (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB3b. Biochem. Biophys. Res. Comm. 89, 671–677.

    Article  CAS  Google Scholar 

  • Hou, C. T., Patel, R., Laskin, A. I. & Barnabe, N. (1979) Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n− alkenes by methylotrophic bacteria. Appl. Environ. Microbiol. 38, 127–134.

    CAS  Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman-Nirenberg, P. & Udenfriend, S. (1970) 1, 2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Biochemistry 9, 147–155.

    Article  CAS  Google Scholar 

  • Jezequel, S. G. & Higgins, I. J. (1983) Mechanistic aspects of bio-transformations by the mono-oxygenase system of Methylosinus trichosporium OB3b. J. Chem. Tech. Biotechnol. 33B, 139–144.

    CAS  Google Scholar 

  • Kurtz, D. M., Shriver, D. F. & Klotz, I. M. (1978) Structural chemistry of hemerythrin. Coord. Chem. Revs. 24, 145–178.

    Article  Google Scholar 

  • Lund, J. (1983) The preparation and characterization of component C of Methylococcus capsulatus (Bath). Ph.D. thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Muhoberac, B. B., Wharton, D. C., Babcock, L. M., Harrington, P. C. & Wilkins, R. G. (1980) EPR spectroscopy of semi-methemerythrin. Biochim. Biophys. Acta 626, 337–345.

    CAS  Google Scholar 

  • Olstein, A. & Hanson, R. S. (1983) Biochemical characterization of methane monooxgenase from a type II methanotroph organism SBl. In: Abstracts of the Fourth International Symposium on Microbial Growth on C 1 Compounds. Minneapolis, U.S.A.

    Google Scholar 

  • Patel, R. N., Hou, C. T., Laskin, A. I. & Felix, A. (1982) Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl. Env. Microbiol. 44, 1130–1137.

    CAS  Google Scholar 

  • Petersson, L., Graslund, A., Ehrenberg, A., Sjoberg, B-M. & Reichard, P. (1980) The iron center in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 255, 6706–6712.

    CAS  Google Scholar 

  • Piliashenko-Novohatnii, A. I., Grigorian, A. N., Kovalev, A. P., Belova, V. S. & Gvozdev, R. I. (1979) Investigation of the mechanism of biological methane oxidation. Doklady Biochem. 245, 147–150.

    Google Scholar 

  • Ribbons, D. W. (1975) Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: distribution and properties of methane dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase) J. Bact. 122, 1351–1363.

    CAS  Google Scholar 

  • Ribbons, D. W. & Michalover, J. L. (1970) Methane oxidation by cell-free extracts of Methylococcus capsulatus. FEBS Lett. 11, 41–44.

    Article  CAS  Google Scholar 

  • Scott, D., Best, D. J. & Higgins, I. J. (1981) Intracytoplasmic membranes in oxygen-limited chemostat cultures of Methylosinus trichosporium OB3b: biocatalytic implications of physiologically balanced growth. Biotech. Lett. 11, 641–644.

    Google Scholar 

  • Stanley, S. H., Prior, S. D., Leak, D. J. & Dalton, H. (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5, 487–492.

    Article  CAS  Google Scholar 

  • Stirling, D. I., Colby, J. & Dalton, H. (1979) A comparison of the substrate and electron-donor specificities of the methane mono-oxygenases from three strains of methane-oxidizing bacteria. Biochem. J. 177, 361–364.

    CAS  Google Scholar 

  • Stirling, D. I. & Dalton, H. (1979) Properties of the methane mono-oxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath) Eur. J. Biochem. 96, 205–212.

    Article  CAS  Google Scholar 

  • Tonge, G. M., Harrison, D. E. F. & Higgins, I. J. (1977) Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem. J. 161, 333–344.

    CAS  Google Scholar 

  • Waters, B. W. (1982) Mechanistic aspects of the mono-oxygenase system from Methylococcus capsulatus. Ph.D. thesis, University of Warwick, Coventry, U.K.

    Google Scholar 

  • Woodland, M. P. & Cammack, R. (1984) Electron spin resonance properties of component A of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). In Microbial Gas Metabolism: Mechanistic Metabolic and Biotechnological Aspects. Ed. by R. K. Poole and C. S. Dow. Academic Press, New York.

    Google Scholar 

  • Woodland, M. P. & Dalton, H. (1984a) Purification and properties of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. chem. 259, 53–59.

    CAS  Google Scholar 

  • Woodland, M. P. & Dalton, H. (1984b) Purification of component A of the Soluble methane monooxygenase of Methylococcus capsulatus (Bath). J. Anal Biochem. 139 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Dalton, H., Leak, D.J. (1985). Mechanistic Studies on the Mode of Action of Methane Monooxygenase. In: Degn, H., Cox, R.P., Toftlund, H. (eds) Gas Enzymology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5279-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5279-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8831-2

  • Online ISBN: 978-94-009-5279-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics