Skip to main content

Microbial activities at Lake Stechlin

  • Chapter
Lake Stechlin

Part of the book series: Monographiae Biologicae ((MOBI,volume 58))

Abstract

According to Ohle (1962) up to 90% of the organic material produced is remineralized in the epilimnion. To understand the nutrient recycling in the lake it is very important to quantify these decomposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostidis, K. & Overbeck, J., 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Ber. Deutsch. Bot. Ges. 79: 163–174.

    CAS  Google Scholar 

  • Babenzien, H.-D., 1964. Hydrobakteriologische Untersuchungen im Stechlinsee. Limnologica 2: 9–34.

    Google Scholar 

  • Babenzien, H.-D., 1968. Studien zur Bakteriologie eines oligotrophen Gewässers (Stechlinsee). Limnologica 6: 207.

    Google Scholar 

  • Bell, W.H., 1980. Bacterial utilization of algal extracellular products. I. The kinetic approach. Limnol. Oceanogr. 25: 1007–1020.

    Article  Google Scholar 

  • Bengtsson, G., 1982. Patterns of amino acid utilization by aquatic hyphomycetes. Oecologia 55: 355–363.

    Article  Google Scholar 

  • Berman, T., Hadas, O. & Marchaim, U., 1979. Heterotrophic glucose uptake and respiration in Lake Kinneret. Hydrobiologia 62: 275–282.

    Article  CAS  Google Scholar 

  • Billen, G., Joiris, C., Wijnant, J. & Gillain, G., 1980. Estuar. Coastl. Mar. Sci. 11: 279–294 (cited according to Fogg, G.E., 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar. 26: 3–14).

    Google Scholar 

  • Bossard, P. & Gächter, R., 1981. Methan- und Sauerstoffhaushalt im mesotrophen Lungernsee. Schweiz. Z. Hydrol. 43: 219–252.

    Article  Google Scholar 

  • Boström, B., Jansson, M. & Forsberg, C., 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Bott, T.L., 1975. Bacterial growth rates and temperature optima in a stream with a fluctuating thermal regime. Limnol. Oceanogr. 20: 191–197.

    Article  Google Scholar 

  • Boylen, C.W. & Brock, T.D., 1973. Bacterial decomposition processes in Lake Wingra sediments during winter. Limnol. Oceanogr. 18: 628–634.

    Article  CAS  Google Scholar 

  • Buck, J.D., 1973. Effects of thermal effluent on the microbiology and chemistry of the Connecticut river. In: Stevenson, H.L. & Colwell, R.R. (eds.), 1973. Estuarine microbial ecology. Univ. S. Carolina Press, USA, 283–297.

    Google Scholar 

  • Cappenberg, T.E., 1982. Carbon flow across the sediment-water interface in Lake Vechten, The Netherlands. Hydrobiologia 91: 161–168.

    Google Scholar 

  • Caspers, H., 1962. Die Bestimmung der Sedimentaktivität. Int. Revue ges. Hydrobiol. 47: 581–586.

    Article  Google Scholar 

  • Chrost, R.J., 1981. The composition and bacterial utilization of DOC released by phytoplankton. Kieler Meeresforsch. Sonderh. 5: 325–332.

    Google Scholar 

  • Clark, J.R., 1969. Thermal pollution and aquatic life. Sci. American 220: 19–27.

    Article  Google Scholar 

  • Cole, J.J. & Likens, C.E., 1979. Measurements of mineralization of phytoplankton detritus in an oligotrophic lake. Limnol. Oceanogr. 24: 541–547.

    Article  CAS  Google Scholar 

  • Collins, V.G., 1977. Methods in sediment microbiology. Adv. Aquatic Microbiol. 1: 219–272.

    Google Scholar 

  • Fogg, G.E., 1983. The ecological significance of extracellular products of phytoplankton phytosynthesis. Bot. Mar. 26: 3–14.

    Article  CAS  Google Scholar 

  • Fuksa, F., 1977. Die Aktivitätsmessungen der heterotrophen Bakterien mittels markierter organischer Substrate. In: Daubner, J. (ed.). II. Internationales Hydromikrobiologisches Symposium, Smolenice. Bratislava: VEDA Verlag der Slowakischen Akademie der Wissenschaften, 301–313.

    Google Scholar 

  • Gocke, K., 1974. Methodische Probleme bei Untersuchungen zur mikrobiellen Stoffaufnahme in Gewässern. Kieler Meeresforsch. 30: 12–23.

    Google Scholar 

  • Gorlenko, V.M., Dubinina, G.H. & Kuznetsov, S.I., 1983. The ecology of aquatic micro-organisms. (Die Binnengewasser 28 ). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung. 252.

    Google Scholar 

  • Griffith, R.P., Hayasaka, St. S., McNamara, Th. M. & Morita, R.Y., 1977. Comparison between two methods of assaying relative microbial activity in marine environments. Appl. Environ. Microbiol. 34: 801–805.

    Google Scholar 

  • Harrison, M. J., Pacha, R.E. & Morita, R. Y., 1972. Solubilization of inorganic phosphates by bacteria isolated from upper Klamath Lake sediments. Limnol. Oceanogr. 17: 50–57.

    Article  CAS  Google Scholar 

  • Harrits, S. & Hanson, R.S., 1980. Stratification of aerobic methane oxidizing organisms. Limnol. Oceanogr. 25: 412–421.

    Article  CAS  Google Scholar 

  • Haubold, G., 1982. Untersuchungen zur bakteriellen Aktivität in der euphotischen Zone des Stechlinseegebiets. Limnologica 14: 243–261.

    Google Scholar 

  • Herbst, V., 1976. Physiologische Untersuchungen zur Kopplung des Stoffwechsels vonOscillatoria Redekiivan Goor und Begleitbakterien. Kiel: Thesis, VIII + 133.

    Google Scholar 

  • Heyer, J. & Babenzien, H.-D., 1985. Untersuchungen des Methankreislaufes in einem oligotrophen See (Stechlinsee). Limnologica 16: 267–276.

    CAS  Google Scholar 

  • Heyer, J. & Suckow, R., 1985. Ökologische Untersuchungen der Methanoxydation in einem sauren Moorsee. Limnologica 16: 247–266.

    CAS  Google Scholar 

  • Howard, D.L., Frea, J.I. & Pfister, R.M., 1971. The potential for methane carbon cycling in Lake Erie. Proc. 14 th Conf. Great Lakes Res. 236–240.

    Google Scholar 

  • Hobbie, J.E. & Rublee, P., 1977. Radioisotope studies of heterotrophic bacteria in aquatic ecosystems. In: Cairns, J. Jr. (ed.). Aquatic microbial communities. New York — London: Garland Publ., Inc. 441–476.

    Google Scholar 

  • Humpesch, U.U., Dokulil, M., Elliott, J.M. & Herzig, A., 1982. Ökologische Auswirkungen der thermischen Gewässerbeeinflussing. Oesterr. Wasserwirtschaft 34: 122–136.

    Google Scholar 

  • Itturiaga, R., 1981. Phytoplankton photoassimilated extracellular products, heterotrophic utilization in marine environment. Kieler Meeresforsch. Sonderh. 5: 318–324.

    Google Scholar 

  • Ivanov, M.V., Belyaev, S.S. & Laurinavichus, K.S., 1976. Methods of quantitative investigation of microbial production and utilization of methane. In: Schlegel, H.S., Gottschalk, G. & Pfennig, N. (eds.), 1976. Microbial production and utilization of gases. Göttingen: E. Goltze KG. 63–67.

    Google Scholar 

  • Iverson, T.M. & Madson, B.L., 1977. Allochthonous organic matter in streams. Folia Limnol. Scandinavia 17: 17–20.

    Google Scholar 

  • Kadota, H. & Tanaka, N., 1975. Bacterial production and decomposition of organic matter. In: Mori, S. & Yamamoto, G. (eds.), 1975. Productivity of communities in Japanese inland water. JIBP Synthesis 10: 13–15.

    Google Scholar 

  • Kaushik, N.K. & Hynes, H.B.N., 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Koschel, R. & Mothes, G., 1976. Änderung der biologischen Produktivität in einem Seensystem durch den Kühlwasserzufluß eines Kernkraftwerkes. Materialien des Internationalen Symposiums über Eutrophierung und Sanierung von Oberflächengewassern. 20.–25.9. 1976 Karl-Marx-Stadt, DDR, Bd. III: 219–233.

    Google Scholar 

  • Krenkel, P.A. & Parker, F.I. (eds.), 1969. Biological aspects of thermal pollution. Proceed. Symp. Thermal Poll. Vanderbilt: Univ. Press.

    Google Scholar 

  • Krumbein, W.E., 1970. On the behaviour of pure cultures of marine micro-organisms in sterilized and re-inoculated sediments. Helgol. wiss. Meeresunters. 20: 17–28.

    Article  Google Scholar 

  • Kunze, Chr. & Bonnert, R., 1982. Blattabbau in Wasserproben aus einem belasteten Fließgewasser. Angew. Bot. 56: 237–242.

    Google Scholar 

  • Kusnetzow, S.I. & Romanenko, V.I., 1966. Produktion der Biomasse heterotropher Bakterien und die Geschwindigkeit ihrer Vermehrung im Rybinsker Stausee. Verh. Int. Verein. Limnol. 18: 176–187.

    Google Scholar 

  • Larsson, U. & Hagström, A., 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.

    Article  Google Scholar 

  • Marinucci, A.C., Hobbie, J.E. & Helfrich, J.U.K., 1983. Effect of litter nitrogen on decomposition and microbial biomass inSpartina alterniflora. Microb. Ecol. 9: 27–40.

    Article  Google Scholar 

  • Miller, M.C., Hater, G.R., Federle, Th. W. & Reed, J.P., 1976. Effects of power plant operation on the biota of a thermal discharge channel. In: Esch, G. W. & McFarlane, R.W. (eds.), 1976. Thermal Ecology II. ERDA-Symposium Series 40: 251–258. Springsfield, USA.

    Google Scholar 

  • Morgan, J.J. & Kalff, J., 1972. Bacterial dynamics in high Arctic lakes. Freshwater Biol. 2: 217–228.

    Article  Google Scholar 

  • Mothes, G., 1965. Ein Beitrag zur Sediment-Charakterisierung des Stechlinsees und zur biologischen Typisierung von Seen. Limnologica 3: 381–388.

    Google Scholar 

  • Naguib, M., 1978. A rapid method for the quantitative estimation of dissolved methane and its application in ecological research. Arch. Hydrobiol. 82: 66–73.

    CAS  Google Scholar 

  • Ohle, W., 1954. Sulfat als ‘Katalysator’ des limnischen Stoffkreislaufs. Vom Wasser 21: 13–32.

    Google Scholar 

  • Ohle, W., 1958. Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasauscheidung ihres Schlammes. Vom Wasser 25: 127–149.

    CAS  Google Scholar 

  • Ohle, W., 1962. Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kieler Meeresforsch. 18: 107–120.

    CAS  Google Scholar 

  • Ohle, W., 1964. Interstitiallösungen der Sedimente, Nährstoffgehalt des Wassers und Primärproduktion des Phytoplanktons in Seen. Helgol. Wiss. Meeresunters. 10: 411–429.

    Article  Google Scholar 

  • Ohle, W., 1982. Nährstoffzufuhren des Grebiner Sees durch atmosphärische Niederschläge und Oberflächenabschwemmung des Einzugsgebietes. Arch. Hydrobiol. 95: 331–363.

    CAS  Google Scholar 

  • Olie, J.J. & Cappenberg, Th. E., 1982. Aspects of aerobic mineralization during spring in Lake Vechten with special reference to the 14 C-labelling technique. Hydrobiologia 95: 181–190.

    Article  CAS  Google Scholar 

  • Overbeck, J., 1973. Über die Kompartimentierung der stehenden Gewässer — ein Beitrag zur Struktur und Funktion des limnischen Ökosystems. Verh. Ges. Ökologie. Saarbrücken. 211–223.

    Google Scholar 

  • Overbeck, J., 1979. Studies on heterotrophic functions and glucose metabolism of microplankton in Plußsee. Arch. Hydrobiol. Beih. 13: 56–76.

    CAS  Google Scholar 

  • Overbeck, J., 1981. A new approach for estimating the overall heterotrophic activity in aquatic ecosystems. Verh. Int. Verein. Limnol. 21: 1355–1358.

    CAS  Google Scholar 

  • Parson, T.R. & Strickland, J.D.H., 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res. 8: 221–222.

    Google Scholar 

  • Proft, G., 1967. Beiträge zur Sedimentchemie von Binnengewässern. I. Die Verteilung des Phosphors in Sedimenten von Seen und Talsperren. Limnologica 5: 397–404.

    CAS  Google Scholar 

  • Reichardt, W., 1978. Responses of phosphorus remobilizingCytophaga species to nutritional and thermal stress. Verh. Int. Verein. Limnol. 20: 2227–2232.

    Google Scholar 

  • Rheinheimer, G., 1981. Mikrobiologie der Gewässer. Jena: VEB Gustav Fischer Verlag. 251.

    Google Scholar 

  • Robertson, C.K., 1979. Quantitative comparison of the significance of methane in the carbon cycles of two small lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 123–135.

    CAS  Google Scholar 

  • Rodina, A.G., 1965. Metody vodnoj mikrobiologii: praktičeskoe rukovodstvo. Moskow-Leningrad: Nauka. 362.

    Google Scholar 

  • Rudd, J.W.M. & Hamilton, R.D., 1978. Methane cycling in a eutrophic shield lake and its effect on whole lake metabolism. Limnol. Oceanogr. 23: 337–348.

    Article  CAS  Google Scholar 

  • Rudd, J.W.M. & Taylor, C.D., 1980. Methane cycling in aquatic environments. Adv. Aquatic Microbiol. 2: 77–150.

    CAS  Google Scholar 

  • Saltzmann, H.A., 1980. Untersuchungen über die Veränderungen der Mikroflora beim Durchgang von Brackwasser durch die Kühlanlagen von Kraftwerken. Kiel: Thesis, III + 124 (+ 36).

    Google Scholar 

  • Sorokin, Y.I. & Kadota, H. (eds.), 1972. Techniques for the assessment of microbial production and decomposition in fresh waters. IBP Handbook Nr. 23. Oxford — London — Edinburgh — Melbourne: Blackwell Sci. Publ. 112.

    Google Scholar 

  • Straškrabová, V. & Desertová, B., 1981. Bakterielle Ausnutzung der extrazellulären Algenprodukte. III. Internationales Hydromikrobiologisches Symposium (ed. I. Daubner). Bratislava. 423–434.

    Google Scholar 

  • Tam, T.Y., Mayfield, C.I & Inniss, W.E., 1981. Nitrogen fixation and methane metabolism in a stream sediment-water system amended with leaf material. Can. J. Microbiol. 27: 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Ungemach, H., 1960. Sedimentchemismus und seine Beziehungen zum Stoffhaushalt in 40 europäischen Seen. Kiel: Thesis, 1–420.

    Google Scholar 

  • Watanabe, Y., 1980. A study of the excretion and extracellular products of natural phytoplankton in Lake Nakanuma, Japan. Int. Revue ges. Hydrobiol. 65: 809–834.

    Article  Google Scholar 

  • Witzel, K.-P., 1980. Temperature compensation of (U-14C) Glucose incorporation by microbial communities in a river with a fluctuating thermal regime. Appl. Environ. Microbiol. 39: 790–796.

    PubMed  CAS  Google Scholar 

  • Wolter, K., 1980. Untersuchungen zur Exsudation organischer Substanz und deren Aufnahme durch natürliche Bakterien-populationen. Report 45, Sfb 95, Universität Kiel, 1–124.

    Google Scholar 

  • Wright, R.T. & Hobbie, J.E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.

    Article  CAS  Google Scholar 

  • Zaiss, U., 1981. Natural ebullition of mine gas and its microbial oxidation in the Netzbach brook, Saarland. Verh. Int. Verein. Limnol. 21: 1381–1385.

    CAS  Google Scholar 

  • Zeikus, J.G., 1983. Metabolic communication between biodegradative populations in nature. In: Slater, J.H., Whittenburg, R. & Wimpenny, J.W.T. (eds.), 1983. Microbes in their natural environments. Symposia of the Society for General Microbiology 34: 423–462. Cambridge: University Press.

    Google Scholar 

Download references

Authors

Editor information

S. Jost Casper

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers, Dordrecht, Boston, Lancaster

About this chapter

Cite this chapter

Babenzien, HD., Babenzien, C. (1985). Microbial activities at Lake Stechlin. In: Casper, S.J. (eds) Lake Stechlin. Monographiae Biologicae, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5506-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5506-6_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8930-2

  • Online ISBN: 978-94-009-5506-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics