Skip to main content

Interactions of detrital particulates and plankton

  • Conference paper
Perspectives in Southern Hemisphere Limnology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 28))

Abstract

Detrital particulates, i.e. inorganic and non-living organic material of colloidal size and larger, span ten orders of magnitude in size and are ubiquitous in inland waters. Interactions between plankton and detrital particulates are reciprocal. Release of dissolved organics by living organisms enter the particulate size fraction by flocculation on bubbles or adsorption to inorganic particles. Bacteria benefit from attachment to particles and are agents in the aggregation of particulates. Nutrients released by decaying plankton can support phytoplankton growth. Potentially toxic compounds adsorb to particulates and then can enter pelagic food webs or sediment. Material egested by zooplankton contributes to the detrital pool which in turn is a food source for zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allanson, B. R. & P. B. N. Jackson, 1983. Limnology and potential of Lake le Roux. S. Afr. Nat. Sci. Prog. Rep. 77. CSIR, Pretoria. 182 pp.

    Google Scholar 

  • Alldredge, A. L., 1976. Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol. Oceanogr. 21: 14 – 23.

    CAS  Google Scholar 

  • Anderson, M. A. & A. J. Rubin (eds), 1981. Adsorption of inorganics at solid-liquid interfaces. Ann Arbor Sci. Publ., Ann Arbor, Mich. 357 pp.

    Google Scholar 

  • Andreae, M. O., 1983. Soot carbon and excess fine. potassium: long-range transport of combustion-derived aerosols. Science 220: 1148 – 1151.

    PubMed  CAS  Google Scholar 

  • Andrews, J. C., 1983. Deformation of the active space in the low Reynolds number feeding current of calanoid copepods. Can. J. Fish. aquat. Sci. 40: 1293–1302.

    Google Scholar 

  • Arruda, J. A., G. R. Marzolf & R. T. Faulk, 1983. The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology 64: 1225 – 1235.

    Google Scholar 

  • Avnimelech, Y., B. W. Troeger & L. W. Reed, 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216: 63 – 65.

    PubMed  CAS  Google Scholar 

  • Balistrier, L., P. G. Brewer & J. W. Murray, 1981. Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-Sea Res. 28A: 101 – 121.

    Google Scholar 

  • Barber, R. T., 1966. Interaction of bubbles and bacteria in the formation of organic aggregates in seawater. Nature, Lond. 211: 257 – 258.

    CAS  Google Scholar 

  • Baylor, E. R. & W. H. Sutcliffe, 1963. Dissolved organic matter in seawater as a source of particulate food. Limnol. Oceanogr. 8: 369 – 371.

    CAS  Google Scholar 

  • Berkeley, R. C. W., J. M. Lynch, J. Melling, P. R. Ratter & B. Vincent (eds), 1980. Microbial adhesion to surfaces. Ellis Horwood Ltd., Chichester, England. 559 pp.

    Google Scholar 

  • Birch, G. F.,1983. The clay mineralogy of sediments in the Vaal Dam and in the rivers supplying and draining the dam upstream of the barrage. Water S.A. 9: 117–123.

    Google Scholar 

  • Bitton, G. & K. C. Marshall (eds), 1980. Adsorption of microorganisms to surfaces. John Wiley & Sons, N.Y. 439 pp.

    Google Scholar 

  • Bloesch, J., P. Stadelmann & H. Buhrer, 1977. Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 511 – 526.

    CAS  Google Scholar 

  • Bowmer, K. H., 1982. Adsorption characteristics of seston in irrigation water: implications for use of aquatic herbicides. Aust. J. mar. Freshwat. Res. 33: 443 – 458.

    CAS  Google Scholar 

  • Boyd, C. M., 1976. Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnol. Oceanogr. 21: 175 – 180.

    Google Scholar 

  • Boye-Chisholm, M. & R. D. Robarts, 1982. An SEM study of bacteria and zooplankton food sources in Lake McIlwaine. In J. A. Thornton (ed.), Lake McIlwaine. W. Junk, The Hague: 101 – 106.

    Google Scholar 

  • Buscemi, P. A. & J. H. Puffer, 1975. Chemico-trophic attributes of detrital aggregates in a New Mexico reservoir. Verh. int. Ver. Limnol. 19: 358 – 366.

    Google Scholar 

  • Button, D. K., 1969. Effect of clay on the availability of dilute organic nutrients to steady-state heterotrophic populations. Limnol. Oceanogr. 14: 95 – 100.

    CAS  Google Scholar 

  • Button, D. K., 1976. The influence of clay and bacteria on the concentration of dissolved hydrocarbon in saline solution. Geochim. Cosmochim. Acta 40: 435 – 440.

    CAS  Google Scholar 

  • Canfield, D. E. & R. W. Bachman, 1978. Detrital aggregates in some Iowa lakes and reservoirs. Hydrobiologia 57: 275 – 279.

    Google Scholar 

  • Carmouze, J.-P., J.-R. Durand & C. Lévêque (eds), 1983. Lake Chad. W. Junk, The Hague. 575 pp.

    Google Scholar 

  • Cauwet, G., 1978. Organic chemistry of sea water particulatesconcepts and developments. Oceanol. Acta 1: 99 – 105.

    CAS  Google Scholar 

  • Chave, K. E.,1965. Carbonates: association with organic matter in surface seawater. Science 148: 1723–1724.

    PubMed  CAS  Google Scholar 

  • Chervin, M. B., T. C. Malone & P. J. Neale, 1981. Interactions between suspended organic matter and copepod grazing in the plume of the Hudson River. Estuar. coast. mar. Sci. 13: 169–183.

    CAS  Google Scholar 

  • Cowen, J. P. & M. W. Silver, 1984. The association of iron and manganese with bacteria on marine macro pa rtic ulate material. Science 224: 1340 – 1342.

    PubMed  CAS  Google Scholar 

  • Currie, D. J., 1984. Microscale nutrient patches: do they matter to the phytoplankton. Limnol. Oceanogr. 29: 211–214.

    Google Scholar 

  • Daley, R. J. & J. E. Hobble, 1975. Direct counts of aquatic bacteria by a modified epifluorescence technique. Limnol. Oceanogr. 20: 875 – 882.

    Google Scholar 

  • Davis, M. B., 1973. Redeposition of pollen grains in lake sediment. Limnol. Oceanogr. 18: 44 – 52.

    Google Scholar 

  • Denman, K. L. & A. E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801 – 815.

    Google Scholar 

  • Dessery, S., C. Dulac, J. M. Laurenceau & M. Meybeck, 1984. Evolution du carbone organique particulaire algal et detritique Bans trois rivieres du Bassin Parisien. Arch. Hydrobiol. 100: 235 – 260.

    CAS  Google Scholar 

  • Douglas, I.,1967. Man, vegetation and sediment yield of rivers. Nature, Lond. 215: 925–928.

    Google Scholar 

  • Dubinsky, Z. & T. Berman, 1979. Seasonal changes in the spectral composition of downwelling irradiance in Lake Kinneret (Israel). Limnol. Oceanogr. 24: 652 – 663.

    CAS  Google Scholar 

  • Edmondson, W. T., 1957. Trophic relations of the zooplankton. Trans. am. microscop. Soc. 76: 225–245.

    Google Scholar 

  • Edzwald, J. K., J. B. Upchurch & C. R. O’Melia, 1974. Coagulation in estuaries. Envir. Sci. Technol. 8: 58 – 63.

    CAS  Google Scholar 

  • Ellwood, D. C., J. Melting & P. Rutter (eds), 1979. Adhesion of microorganisms to surfaces. Academic Press, N.Y. 216 pp.

    Google Scholar 

  • Fish, G. R., 1978. Lake Rerewhakaaitu — an apparently phosphate-free lake. N.Z. J. Mar. Freshwat. Res. 12: 257 – 263.

    CAS  Google Scholar 

  • Förstner, U. & G. Wittmann (eds), 1979. Metal pollution in aquatic environments. Springer-Verlag, N.Y. 486 pp.

    Google Scholar 

  • Friedman, M. M. & J. R. Strickler, 1975. Chemoreception and feeding in calanoid copepods (Arthropoda: Crustacea). Proc. natn. Acad. Sci. U.S.A. 72: 4185 – 4188.

    CAS  Google Scholar 

  • Fukuda, M. K. & W. Lick, 1980. The entrainment of cohesive sediments in freshwater. J. Geophys. Res. 85: 2813 – 2824.

    Google Scholar 

  • Ganf, G. G., 1974. Incident solar radiation and underwater light penetration as factors controlling the chlorophyll a content of a shallow equatorial lake (L. George, Uganda). J. Ecol. 62: 593–609.

    CAS  Google Scholar 

  • Geddes, M. C., 1984. Limnology of Lake Alexandrina, River Murray, South Australia, and the effects of nutrients and light on the phytoplankton. Aust. J. mar. Freshwat. Res. 35: 399 – 415.

    CAS  Google Scholar 

  • Gerber, R. P. & N. Marshall, 1974. Ingestion of detritus by the lagoon pelagic community at Eniwetok Atoll. Limnol. Oceanogr. 19: 815 – 824.

    Google Scholar 

  • Gerritsen, J. & K. G. Porter, 1982. The role of surface chemistry in filter feeding by zooplankton. Science 216: 1225 – 1227.

    PubMed  CAS  Google Scholar 

  • Gibbs, R. J., 1967. The geochemistry of the Amazon River System: Part 1. The factors that control the salinity and the composition and concentration of the suspended solids. Geol. Soc. am. Bull. 78: 1203 – 1232.

    CAS  Google Scholar 

  • Goldman, C. R., R. C. Richards, H. W. Paerl, R. C. Wrigley, V. R. Oberbeck & W. L. Quaide, 1974. Limnological studies and remote sensing of the Upper Truckee River sediment plume in Lake Tahoe, California-Nevada. Remote Sensing Environ. 3: 49 – 67.

    Google Scholar 

  • Goldman, C. R. & B. L. Kimmel, 1978. Biological processes associated with suspended sediment and detritus in lakes and reservoirs. In J. Cairns, Jr., E. F. Benfield & J. R. Webster (eds), Current perspectives on river-reservoir ecosystems. N. Am. Benthol. Soc. Publ. 1. Virginia Polytechnic Inst., Blacksburg, Virginia: 19 – 44.

    Google Scholar 

  • Golterman, H. L., C. S. Bakels & J. Jakobs-Mögelin, 1969. Availability of mud phosphates for the growth of algae. Verh. int. Ver. Limnol. 17: 467 – 479.

    Google Scholar 

  • Gottfried, M. & M. R. Roman, 1983. The ingestion and assimilation of coral mucus detritus by reef zooplankton. Mar. Biol. 72: 211 – 218.

    Google Scholar 

  • Green, D. B., T. J. Logan & N. S. Smeck, 1978. Phosphate adsorption-desorption characteristics of suspended sediments in the Maumee River basin of Ohio. J. envir. Qual. 7: 208 – 212.

    CAS  Google Scholar 

  • Grobbelaar, J. U., 1983. Availability to algae of N and P adsorbed on suspended solids in turbid waters of the Amazon River. Arch. Hydrobiol. 96: 302 – 316.

    CAS  Google Scholar 

  • Grobler, D. C. & E. Davies, 1979. The availability of sediment phosphate to algae. Water S.A. 5: 114 – 122.

    CAS  Google Scholar 

  • Grobler, D. C. & E. Davies, 1981. Sediments as a source of phosphate: a study of 38 impoundments. Water S.A. 7: 54 – 60.

    CAS  Google Scholar 

  • Hahn, H. H. & W. Stumm, 1970. The role of coagulation in natural waters. Am. J. Sci. 268: 354 – 368.

    CAS  Google Scholar 

  • Harding, L. W. & J. H. Phillips, 1978. Polychlorinated biphenyls: transfer from micro particulates to marine phytoplankton and the effects on photosynthesis. Science 202: 1189 – 1192.

    PubMed  CAS  Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergeb. Limnol. 10: 1 – 163.

    Google Scholar 

  • Harris, R. H. & R. Mitchel, 1973. The role of polymers in microbial aggregation. Ann. Rev. Microbial. 27: 27 – 50.

    CAS  Google Scholar 

  • Hecky, R. E. & P. Kilham, 1973. Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol. Oceanogr. 18: 53 – 71.

    CAS  Google Scholar 

  • Hicks, B., 1983. Dry deposition processes. In A. P. Altshuller (ed.), The acidic deposition phenomenon and its effects: critical assessment review papers. v. 1. Atmospheric sciences. EPA-600/8-83-016A, Washington D.C. 7-1 to 7 – 73.

    Google Scholar 

  • Huang, C. P., 1977. Solid-solution interface: its role in regulation of the chemical composition of natural waters. In R. J. Gibbs (ed.), Transport processes in lakes and oceans. Plenum Press, N.Y.: 9 – 33.

    Google Scholar 

  • Hunt, J. R., 1980. Prediction of oceanic particle size distributions from coagulation and sedimentation mechanisms. In M. C. Kavanaugh & J. O. Leckie (eds), Particulates in water. Adv. Chem. Ser. 189. Am. Chem. Soc., Washington, D.C.: 243 – 257.

    Google Scholar 

  • Hunter, K. A. & P. S. Liss, 1979. The surface charge of suspended particles in estuarine and coastal waters. Nature, Lond. 282: 823 – 825.

    CAS  Google Scholar 

  • Hunter, K. A. & P. S. Liss, 1982. Organic matter and the surface charge of suspended particles in estuarine waters. Limnol. Oceanogr. 27: 322 – 335.

    CAS  Google Scholar 

  • Jassby, A. D., 1975. The ecological significance of sinking to planktonic bacteria. Can. J. Microbial. 21: 270 – 274.

    CAS  Google Scholar 

  • Johnson, B. D., 1976. Nonliving organic particle formation from bubble dissolution. Limnol. Oceanogr. 21: 444 – 446.

    Google Scholar 

  • Jorgensen, B. B., N. P. Revsbech & Y. Cohen, 1983. Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28: 1075 – 1093.

    Google Scholar 

  • Kalk, M., A. J. McLachlan & C. Howard-Williams (eds), 1979. Lake Chilwa. W. Junk, The Hague. 462 pp.

    Google Scholar 

  • Kavanaugh, M. C. & J. O. Leckie (eds), 1980. Particulates in water. Adv. Chem. Ser. 189. Am. Chem. Soc., Washington, D.C. 401 pp.

    Google Scholar 

  • Kerr, S. R., 1974. Theory of size distributions in ecological communities. J. Fish. Res. Bd Can. 31: 1859 – 1862.

    Google Scholar 

  • Kimmel, B. L., 1983. Size distribution of planktonic autotrophy and microheterotrophy: Implications for organic carbon flow in reservoir food webs. Limnol. Oceanogr. 97: 303–319.

    Google Scholar 

  • Kirchman, D., 1983. The production of bacteria attached to particles suspended in a freshwater pond. Limnol. Oceanogr. 28: 858 – 872.

    Google Scholar 

  • Kirchman, D. & R. Mitchell, 1982. Contribution of particlebound bacteria to total micro heterotro phic activity in five ponds and two marshes. Appl. envir. Microbial. 43: 200 – 209.

    CAS  Google Scholar 

  • Kirk, J. T. O., 1979. Spectral distribution of photosynthetically active radiation in some south-eastern Australian waters. Aust. J. mar. Freshwat. Res. 30: 81 – 91.

    Google Scholar 

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic systems. Cambridge Univ. Press, Cambridge. 401 pp.

    Google Scholar 

  • Knauer, G. A., D. Rebel & F. Cirpiano, 1982. Marine snow: major site of primary productivity in coastal waters. Nature, Lond. 300: 630 – 631.

    Google Scholar 

  • Koehl, M. A. & J. R. Strickler, 1981. Copepod feeding currents: food capture at low Reynolds number. Limnol. Oceanogr. 26:1062–1073.

    Google Scholar 

  • Lal, D., 1977. The oceanic microcosm of particles. Science 198: 997–1009.

    PubMed  CAS  Google Scholar 

  • Lambert, C. E., C. Jehanno, N. Silverberg, J. C. Brun-Cotton & R. Chesselet, 1981. Log-normal distributions of suspended particles in the open ocean. J. mar. Res. 39: 77–97.

    CAS  Google Scholar 

  • Lehman, J. T. & D. Scavia, 1982. Microscale patchiness of nutrients in plankton communities. Science 216: 729 – 730.

    PubMed  CAS  Google Scholar 

  • Lehman, J. T. & D. Scavia, 1984. Measuring the ecological significance of microscale nutrient patches. Limnol. Oceanogr. 29: 214 – 216.

    Google Scholar 

  • Lenz, J., 1977. Seston and its main components. In G. Rheinheimer (ed.), Microbial ecology of a brackish water environment. Springer-Verlag, Berlin: 37 – 60.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Google Scholar 

  • Lush, D. L. & H. B. N. Hynes, 1973. The formation of particles in freshwater leachates of dead leaves. Limnol. Oceanogr. 18: 968 – 977.

    CAS  Google Scholar 

  • Marshall, K. C., 1976. Interfaces in microbial ecology. Harvard Univ. Press, Cambridge, Mass. 156 pp.

    Google Scholar 

  • Marshall, K. C. & G. Bitton, 1980. Microbial adhesion in perspective. In G. Bitton & K. C. Marshall (eds), Adsorption of microorganisms to surfaces. J. Wiley & Sons, N.Y.: 1–5.

    Google Scholar 

  • Martin, J.-M. & M. Meybeck, 1979. Elemental mass balance of material carried by major world rivers. Mar. Chem. 7: 173 – 206.

    CAS  Google Scholar 

  • Mayer, L. M. & S. P. Gloss, 1980. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 25: 12 – 22.

    CAS  Google Scholar 

  • McCabe, G. D. & W. J. O’Brien, 1983. The effects of suspended silt on feeding and reproduction of Daphnia pulex. Am. Midl. Nat. 110: 324 – 337.

    Google Scholar 

  • McCarthy, J. J. & J. C. Goldman, 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203: 670 – 672.

    PubMed  CAS  Google Scholar 

  • Melack, J. M., 1979. Photosynthesis and growth of Spirulina platensis(Cyanophyta) in an equatorial lake (Lake Simbi, Kenya). Limnol. Oceanogr. 24: 753 – 760.

    Google Scholar 

  • Melack, J. M., 1980. An initial measurement of photosynthetic productivity in Lake Tanganyika. Hydrobiologia 72: 243–247.

    Google Scholar 

  • Melack, J. M. & P. Kilham, 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 19: 743 – 755.

    CAS  Google Scholar 

  • Melchiorri-Santolini, V. & J. W. Hopton (eds), 1972. Detritus and its role in aquatic ecosystems. Mem. Ist. ital. Idrobiol. 29 (Suppl.) 540 pp.

    Google Scholar 

  • Meybeck, M., 1976. Dissolved and suspended matter carried by rivers: composition, time and space variations, and world balance. In H. L. Golterman (ed.), Interactions between sediments and freshwater. W. Junk, The Hague: 25 – 32.

    Google Scholar 

  • Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. Am. J. Sci. 282: 401 – 405.

    CAS  Google Scholar 

  • Meyers, P. H. & J. G. Quinn, 1974. Organic matter on clay minerals and marine sediments — effect on adsorption of dissolved copper, phosphate and lipids from saline solutions. Chem. Geol. 13: 63 – 68.

    CAS  Google Scholar 

  • Morales, C. (ed.), 1979. SCOPE 14: Saharan dust: mobilization, transport, and deposition. John Wiley & Sons, N.Y. 297 pp.

    Google Scholar 

  • Mulholland, P. J., 1981. Formation of particulate organic carbon in water from a southeastern swamp-stream. Limnol. Oceanogr. 26: 790 – 795.

    CAS  Google Scholar 

  • Munk, W. H. & G. A. Riley, 1957. Absorption of nutrients by aquatic plants. J. mar. Res. 11: 215 – 240.

    Google Scholar 

  • Nadin-Hurley, C. M. & A. Duncan, 1976. A comparison of daphnid gut particles with sestonic particles present in two Thames Valley reservoirs throughout 1970 and 1971. Freshwat. Biol. 6: 109 – 123.

    Google Scholar 

  • Nau-Ritter, G. M. & C. F. Wurster, 1983. Sorption of polychlorinated biphenyls (PCB) to clay particulates and effects of desorption on phytoplankton. Wat. Res. 17: 383 – 387.

    CAS  Google Scholar 

  • Neihof, R. A. & G. J. Loeb, 1972. The surface charge of particulate matter in seawater. Limnol. Oceanogr. 17: 7 – 16.

    CAS  Google Scholar 

  • Neihof, R. & G. Loeb, 1974. Dissolved organic matter in seawater and the electric charge of immersed surfaces. J. mar. Res. 32: 5 – 12.

    CAS  Google Scholar 

  • Odum, E. P. & A. A. de La Cruz, 1963. Detritus as a major component of ecosystems. Am. Inst. Biol. Sci. Bull. 13: 39 – 40.

    Google Scholar 

  • O’Melia, C. R., 1980. Aquasols: the behavior of small particles in aquatic systems. Envir. Sci. Technol. 14: 1052–1060. 1052 – 1060.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763 – 767.

    CAS  Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1973. Interaction of yellow organic acids with calcium carbonate in freshwater. Limnol. Oceanogr. 18: 490 – 493.

    CAS  Google Scholar 

  • Paerl, H. W., 1973, Detritus in Lake Tahoe: structural modification by attached microflora. Science 180: 496–498.

    PubMed  CAS  Google Scholar 

  • Paerl, H. W., 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater systems. Limnol. Oceanogr. 19: 966–972.

    Google Scholar 

  • Paerl, H. W., 1975. Microbial attachment to particles in marine and freshwater ecosystems. Microb. Ecol. 2: 73–83.

    Google Scholar 

  • Paerl, H. W., 1977. Bacterial sediment formation in lakes: trophic implications. In H. L. Golterman (ed.), Interactionsbetween sediments and fresh water. W. Junk, The Hague: 40 – 47.

    Google Scholar 

  • Paerl, H. W., 1978. Microbial organic carbon recovery in aquatic ecosystems. Limnol. Oceanogr. 23: 927–935.

    CAS  Google Scholar 

  • Paerl, H. W,,1980. Attachment of microorganisms to living and detrital surfaces in freshwater systems. In G. Bitton & K. C. Marshall (eds), Adsorption of microorganisms to surfaces. John Wiley & Sons, N.Y.: 375 – 402.

    Google Scholar 

  • Paerl, H. W. & S. M. Merkel, 1982. Differential phosphorus assimilation in attached vs. unattached microorganisms. Arch. Hyrobiol. 93: 125 – 134.

    Google Scholar 

  • Paerl, H. W. & S. L. Skimp, 1973. Preparation of filtered plankton and detritus for study with scanning electron microscopy. Limnol. Oceanogr. 18: 802 – 805.

    Google Scholar 

  • Pasciak, W. J. & J. Gavis, 1974. Transport limitation of nutrient uptake in phytoplankton. Limnol. Oceanogr. 19: 881 – 888.

    Google Scholar 

  • Pedrós-Alió, C. & T. D. Brock, 1983a. The importance of attachment to particles for planktonic bacteria. Arch. Hydrobiol. 98: 354 – 379.

    Google Scholar 

  • Pedrós-Alió, C. & T. D. Brock, 1983b. The impact of zooplankton feeding on the epilimnetic bacteria of a eutrophic lake. Freshwat. Biol.. 73: 227 – 239.

    Google Scholar 

  • Peters, R. H., 1983. Size structure of the plankton community along a trophic gradient of Lake Memphremagog. Can. J. Fish. aquat. Sci. 40: 1770 – 1778.

    Google Scholar 

  • Peterson, B. J., J. E. Hobble & J. F. Honey, 1978. Daphnia grazing on natural bacteria. Limnol. Oceanogr. 23: 1039–1044.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943 – 948.

    Google Scholar 

  • Porter, K. G., M. L. Pace & J. F. Battley, 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature, Lond. 277: 563 – 566.

    Google Scholar 

  • Poulet, S. A., 1976. Feeding of Pseudocalanus minutus on living and non-living particles. Mar. Biol. 34: 117–125.

    Google Scholar 

  • Prézelin, B. B. & A. L. Alldredge, 1983. Primary production of marine snow during and after an upwelling event. Limnol. Oceanogr. 28: 1156 – 1167.

    Google Scholar 

  • Priscu, J. C. & C. R. Goldman, 1983. Suspensoid characteristics in subalpine Castle Lake, California. 1. Chemical composition. Arch. Hydrobiol. 97: 373 – 388.

    CAS  Google Scholar 

  • Prospero, J. M., R. A. Glaccurn & R. T. Nees, 1981. Atmospheric transport of soil dust from Africa to South America. Nature, Lond. 289: 570–572.

    CAS  Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge. 384 pp.

    Google Scholar 

  • Rich, P. H., 1984. Trophic-detrital interactions: vestiges of ecosystem evolution. Am. Nat. 123: 20–29.

    Google Scholar 

  • Rich, P. H. & R. G. Wetzel, 1978. Detritus in the lake ecosystem. Am. Nat. 112: 57 – 71.

    Google Scholar 

  • Richman, S., S. A. Bohon & S. E. Robbins, 1980. Grazing interactions among freshwater calanoid copepods. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. Univ. Press of New England, Hanover, N.H.: 219 – 233.

    Google Scholar 

  • Riley, G. A., 1963. Organic aggregates in seawater and the dynamics of their formation and utilization. Limnol. Oceanogr. 8: 372–381.

    CAS  Google Scholar 

  • Riley, G. A., 1970. Particulate organic matter in sea water. Adv. Mar. Biol. 8: 1–118.

    Google Scholar 

  • Riley, G. A., 1973. Particulate and dissolved organic carbon in the oceans. In G. M. Woodwell & E. V. Pecan (eds), Carbon and the Biosphere. CONF 720510. Nat. Techn. Inf. Serv., Springfield, Virginia: 204 – 220.

    Google Scholar 

  • Robarts, R. D. & L. M. Sephton, 1981. The enumeration of aquatic bacteria using DAPI, J. Limnol. Soc, sth. Afr. 7: 72 – 74.

    Google Scholar 

  • Robinson, M., 1957. The effects of suspended materials on the reproductive rate of Daphnia magna. Publ. Inst. mar. Sci., Univ. Texas 4: 265 – 277.

    Google Scholar 

  • Rodina, A. G., 1983. Microbiology of detritus of lakes. Limnol. Oceanogr. 8: 388–393.

    Google Scholar 

  • Roman, M. R., 1984. Utilization of detritus by the copepod, Acartia tonsa. Limnol. Oceanogr. 29: 949 – 959.

    Google Scholar 

  • Roman, M. R. & P. H. Rublee, 1981. A method to determine in situ zooplankton grazing rates on natural particle assemblages. Mar. Biol. 65: 303–309.

    Google Scholar 

  • Salim, R., 1983. Adsorption of lead on suspended particles of river water. Wat. Res. 17: 423 – 429.

    CAS  Google Scholar 

  • Saunders, G. W.,1969. Some aspects of feeding in zooplankton. In G. A. Rohlich (ed.), Eutrophication: causes, consequences, correctives. Nat. Ac. Sci., Washington, D.C.: 556 – 573.

    Google Scholar 

  • Schindler, D. W., 1968. Feeding, assimilation and respiration rates of Daphnia magnaunder various environmental conditions and their relation to production estimates. J. Anim. Ecol. 37: 369 – 385.

    Google Scholar 

  • Schlesinger, W. H. & J. M. Melack, 1981. Transport of organic carbon in the world’s rivers. Tellus 33: 172–187.

    CAS  Google Scholar 

  • Schmidt, G. W., 1972. Amounts of suspended solids and dissolved substances in the middle reaches of the Amazon over the course of one year (August 1969 – July 1970). Amazoniana 3: 208 – 223.

    Google Scholar 

  • Schmidt, G. W., 1973. Primary production of phytoplankton in the three types of Amazonian waters, II. The limnology of a tropical flood-plain lake in central Amazonia (Logo de Castanha). Amazoniana 4: 139–203.

    Google Scholar 

  • Scholkovitz, E. R,, 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and sea water. Geochim. Cosmochim. Acta. 40: 831–845.

    Google Scholar 

  • Seki, H., 1982. Organic materials in aquatic ecosystems. CRC Press, Boca Raton, Louisiana. 201 pp.

    Google Scholar 

  • Selkirk, W. T., 1982. An analysis, by bioassay, of the factors which limit algal growth in the P.K. le Roux Impoundment, Orange River, South Africa. Hydrobiologia 97: 151 – 156.

    Google Scholar 

  • Shanks, A. L. & J. D. Trent, 1979. Marine snow: microscale nutrient patches. Limnol. Oceanogr. 24: 850 – 854.

    CAS  Google Scholar 

  • Shanks, A. L. & J. D. Trent, 1980. Marine snows sinking rates and potential role in vertical flux. Deep Sea Res. 27: 137 – 144.

    Google Scholar 

  • Sheldon, R. W., 1972. Size separation of marine seston by membrane and glass fiber filters. Limnol. Oceanogr. 17: 494 – 498.

    Google Scholar 

  • Sheldon, R. W., A. Prakash & W. H. Sutcliffe, Jr, 1972. The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327 – 340.

    Google Scholar 

  • Sieburth, J. M., 1976. Bacterial substrates and productivity in marine ecosystems. Ann. Rev. Ecol. Syst. 7: 259 – 285.

    Google Scholar 

  • Silver, M. N., A. L. Shanks & J. D. Trent, 1978. Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201: 371 – 373.

    PubMed  CAS  Google Scholar 

  • Silvert, W. & T. Platt, 1980. Dynamic energy-flow model of the particle size distribution in pelagic environments. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. Univ. Press of New England, Hanover, N.H.: 754 – 763.

    Google Scholar 

  • Sprules, W. G., J. M. Casselman & B. J. Shuter, 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. aquat. Sci. 40: 1761 – 1769.

    Google Scholar 

  • Stotzky, G., 1967. Clay minerals and microbial ecology. Trans. N.Y. Acad. Sci. 30: 11–21.

    PubMed  CAS  Google Scholar 

  • Stotzky, G. & R. G. Burns, 1982. The soil environment: clayhumus-microbe interactions. In R. G. Burns & J. W. Slater (eds), Experimental microbial ecology. Blackwell Sci. Publ.: 105 – 133.

    Google Scholar 

  • Strong, A. E. & B. J. Eadie, 1978. Satellite observations of calcium carbonate precipitations in the Great Lakes. Limnol. Oceanogr. 23: 877 – 887.

    CAS  Google Scholar 

  • Stumm, W., 1977. Chemical Interaction in particle separation. Envir. Sci. Technol. 11: 1066 – 1070.

    CAS  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic chemistry. John Wiley & Sons, N.Y. 780 pp.

    Google Scholar 

  • Stumm, W. & C. R. O’Melia, 1968. Stoichiometry of coagulation. J. Am. Wat. Wks Ass. 60: 514 – 539.

    CAS  Google Scholar 

  • Tailing, J. F., 1971. The underwater light climate as a controlling factor in the production of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Teot, A. S. & S. L. Daniels, 1969. Flocculation of negatively charged colloids by inorganic cations and anionic polyelectrolytes. Envir. Sci. Technol. 3: 825 – 829.

    CAS  Google Scholar 

  • Trent, J. D., A. L. Shanks & M. W. Silver, 1978. In situ and laboratory measurements on microscopic aggregates in Monterey Bay, California. Limnol. Oceanogr. 23: 626 – 635.

    CAS  Google Scholar 

  • Tundisi, J. G., 1981. Typology of reservoirs in southern Brazil. Verh. int. Ver. Limnol. 21: 1031–1039.

    Google Scholar 

  • Turekian, K. K., 1977. The fate of metals in the oceans. Geochim. Cosmochim. Acta 41: 1139 – 1144.

    CAS  Google Scholar 

  • Turner, J. T. & J. G. Ferrante, 1979. Zooplankton fecal pellets in aquatic ecosystems. BioScience 29: 670 – 677.

    Google Scholar 

  • Van Valkenberg, S. D., J. K. Jones & D. R. Heinle, 1978. A comparison by size class and volume of detritus versus phytoplankton in Chesapeake Bay. Estuar. coast. mar. Sci. 6: 569 – 582.

    Google Scholar 

  • Voice, T. C. & W. S. Weber Jr, 1983. Sorption of hydrophobic compounds by sediments, soils and suspended solids. I. Wat. Res. 17: 1433 – 1441.

    CAS  Google Scholar 

  • Walmsley, R. D. & C. A. Bruwer, 1980. Water transparency characteristics of South African impoundments. J. Limnol. Soc. sth. Afr. 6: 69 – 76.

    Google Scholar 

  • Walmsley, R. D., M. Butty, H. van der Piepen & D. Grobler, 1980. Light penetration and interrelationships between optical parameters in a turbid subtropical impoundment. Hydrobiologia 70: 145 – 157.

    Google Scholar 

  • Wangersky, P. J., 1977. The role of particulate matter in the productivity of surface waters. Helgoldnder wiss. Meeresunters. 30: 546 – 564.

    CAS  Google Scholar 

  • Weatherly, A. H. (ed.), 1967. Australian inland waters and their fauna: eleven studies. Aust. Nat. Univ. Press, Canberra, 287 pp.

    Google Scholar 

  • Weber, W. J. Jr. (ed.), 1972. Physicochemical processes for water quality control. Wiley-Interscience, N.Y. 640 pp.

    Google Scholar 

  • Weber, W. J. Jr, T. C. Voice, M. Pirbazari, G. E. Hunt & D. M. Ulanoff, 1983. Sorption of hydrophobic compounds by sediments, soil and suspended solids, II. Wat. Res. 17: 1443 – 1452.

    CAS  Google Scholar 

  • Wetzel, R. G., 1966. Productivity and nutrient relationships in marl lakes of northern Indiana. Verh. int. Ver. Limnol. 16: 321 – 332.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Saunders Coll. Publ., Philadelphia, 767 pp.

    Google Scholar 

  • Wetzel, R. G. & P. H. Rich, 1973. Carbon in freshwater systems. In G. M. Woodwell & E. V. Pecan (eds), Carbon and the Biosphere. CONF-720510. Nat. Techn. Inf. Serv., Springfield, Virginia: 241 – 263.

    Google Scholar 

  • White, E. & G. Payne, 1980a. Distribution and biological availability of reactive high molecular weight phosphorus in natural waters in New Zealand. Can. J. Fish. aquat. Sci. 37: 664 – 669.

    CAS  Google Scholar 

  • White, E. & G. W. Payne, 1980b. Relative importance of microflora and allophonic clays to phosphorus dynamics of Lake Rerewhakaaitu. N.Z. J. Mar. Freshwat. Res. 14: 83 – 85.

    Google Scholar 

  • Widmer, C., T. Kittel & P. J. Richerson, 1975. A survey of the biological limnology of Lake Titicaca. Verh. int. Ver. Limnol. 19: 1504 – 1510.

    Google Scholar 

  • Wissmar, R. C., J. E. Richey, R. F. Stallard & J. M. Edmond, 1981. Plankton metabolism and carbon processes in the Amazon river, its tributaries, and floodplain waters, Peru-Brazil, May-June 1977. Ecology 62: 1622 – 1633.

    CAS  Google Scholar 

  • Zabawa, C. F., 1978. Microstructure of agglomerated suspended sediments in northern Chesapeake Bay estuary. Science 202: 49 – 51.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., 1943. The effect of solid surfaces upon bacterial activity. J. Bact. 46: 39 – 56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. R. Davies R. D. Walmsley

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers

About this paper

Cite this paper

Melack, J.M. (1985). Interactions of detrital particulates and plankton. In: Davies, B.R., Walmsley, R.D. (eds) Perspectives in Southern Hemisphere Limnology. Developments in Hydrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5522-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5522-6_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8937-1

  • Online ISBN: 978-94-009-5522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics