Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 119))

  • 392 Accesses

Abstract

Classical vaporization methods such as transpiration and Knudsen or Langmuir effusion have been limited because they do not establish the molecular identity of transport species or because low pressures are necessary to make effusion measurements. We have developed a new technique—Transpiration Mass Spectrometry (TMS)—that overcomes both of these limitations by combining the basic features of transpiration and molecular beam mass spectrometry. With this technique, it is possible to sample reactive gases directly from high-temperature (to 1500 °C), high-pressure (to 10 atm) atmospheres for quantitative characterization with a mass spectrometer. The accuracy of thermochemical data obtained by the TMS method is competitive with that of established lower dynamic range techniques. Examples of application to vaporization of complex silicate slags, glasses, and minerals are considered. Implications and precautions resulting from cooling effects during the sampling process are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hastie, J. W.: 1975, High Temperature Vapors: Science and Technology ( Academic Press, New York).

    Google Scholar 

  2. Hastie, J. W.: 1975, Intl. J. Mass Spectrom. Ion Phys. 16, p. 89 and Hastie, J. W.: 1973, Combust. Flame, 21, p. 49.

    Google Scholar 

  3. Stearns, C. A., Kohl, F. J., and Fryburg, G. C.: 1979, 10th Materials Research Symposium on Characterization of High Temperature Vapors and Gases, J. W. Hastie, ed., NBS SP–561.

    Google Scholar 

  4. Mertin, U. and Bell, W. E.: 1967, The Characterization of High Temperature Vapors, Margrave, J. L., ed., ( Wiley, New York ) p. 91.

    Google Scholar 

  5. Kantrowitz, A. and Grey, J.: 1951, Rev. Sci. Instru. 22, p. 328.

    Article  CAS  Google Scholar 

  6. Greene, F. T., Brewer, J., and Milne, T. A.: 1964, J. Chem. Phys. 40, p. 1488.

    Article  CAS  Google Scholar 

  7. Abuaf, N., Anderson, J. B., Andres, R. P., Fenn, J. B., and Marsden, D. G. H.: 1967, Science, 156, p. 997.

    Article  Google Scholar 

  8. JANAF Thermochemical Tables, 2nd ed.: 1971, NSRDS-NBS 37, ( U. S. Govt. Printing Office, Washington, D.C. )

    Google Scholar 

  9. Feather, D. H. and Searcy, A. W.: 1971, High Temp. Sci. 3, p. 155.

    CAS  Google Scholar 

  10. Milne, T. A. and Klein, H. M.: 1960, J. Chem. Phys. 33, p. 1628.

    Article  CAS  Google Scholar 

  11. Plante, E. R.: 1979, “Vapor Pressure Measurements of Potassium Over K20-Si02 Solutions by a Knudsen Effusion Mass Spectrometric Method,” in Characterization of High Temperature Vapors and Gases, Hastie, J. W. ed. NBS-SP-561, (U.S. Govt. Printing Office, Washington, DC ) p. 265.

    Google Scholar 

  12. Kieffer, L. J. and Dunn, G. H.: 1966, Rev. Mod. Phys. 38, p. 1.

    Article  CAS  Google Scholar 

  13. Meyer, R. T. and Lynch, A. W.: 1973, High Temp. Science, 5, p. 192.

    CAS  Google Scholar 

  14. Stwalley, W. C., and Koch, M. E.: 1980, Opt. Eng. 19, p. 71.

    CAS  Google Scholar 

  15. Haynes, B. S., Jander, H., and Wagner, H. G.: 1978, Symp. (Int.) Combust., 17th, (The Comb. Inst., Pittsburgh, PA ) p. 1365.

    Google Scholar 

  16. Gangwal, S. K., and Truesdale, R. S.: 1980, Energy Res. 4, p. 113.

    Article  CAS  Google Scholar 

  17. Rapp, R., ed.: 1981, International Conference on High Temperature Corrosion, San Diego, CA, March 2–6, NACE, Proceedings in press.

    Google Scholar 

  18. Hastie, J. W., Bonnell, D. W., and Zmbov, K.: 1981, “Transpiration Mass Spectrometric Analysis of K0H(£) and KC1(£) Vaporization,” to be published.

    Google Scholar 

  19. Gusarov, A. V. and Gorokhov, L. N.: 1968, Russ. J. Phys. Chem. 42, p. 449.

    Google Scholar 

  20. Hastie, J. W., Plante, E. R., Bonnell, D. W., and Horton, W. S.: 1980, “Moleeular Basis for Release of Alkali and Other Inorganic Impurities From Coal Minerals and Fly Ash,” Report to DOE Morgantown, WV.

    Google Scholar 

  21. Gatti, A., Goldstein, H. W., McCreight, L. R., and Semon, H. W.: 1980, “Feasibility Study of Coal Slag Based Glasses for Hot Gas Clean-up,” Report FE-2068-32 to DOE (February).

    Google Scholar 

  22. Sanders, D. M. and Haller, W. K.: 1979, “A High Temperature Transpiration Apparatus for the Study of the Atmosphere Above Viscous Incongruently Vaporizing Melts,” p. Ill, ibid, (3).

    Google Scholar 

  23. Neudorf, D. A., and Elliott, J. F.: 1980, Met. Trans., 1 IB, p. 607.

    Google Scholar 

  24. Cable, M., and Chaudhry, M. A.: 1975, Glass Tech., 16, p. 125.

    CAS  Google Scholar 

  25. Sanders, D. M., Blackburn, D. H., and Haller, W. K.: 1976, J. Am. Ceram. Soc., 59, p. 366.

    Article  CAS  Google Scholar 

  26. Argent, B. B., Jones, K., and Kirkbride, B. J.: 1980, “Vapors in Equilibrium with Glass Melts,” in The Industrial Use of Thermochemical Data, Barry, T. I., ed., ( The Chemical Society, London, UK ) p. 379.

    Google Scholar 

  27. Hastie, J. W., Bonnell, D. W., Plante, E. R., and Horton, W. S.: 1980, “Vaporization and Chemical Transport Under Coal Gasification Conditions,” NBSIR 80 - 2178.

    Google Scholar 

  28. Hastie, J. W., Plante, E. R., and Bonnell, D. W.: 1981, “Slag-Alkali Halide Exchange Reactions,” to be published.

    Google Scholar 

  29. Schwerdtfeger, K., and Schubert, H. G.: 1978, Met. Trans. 9B, p. 143.

    Google Scholar 

  30. Turkdogan, E. T.: 1980, Physical Chemistry of High Temperature Technology ( Academic Press, New York).

    Google Scholar 

  31. Brower, W. S., Waring, J. L., and Blackburn, D. H.: 1980, “Slag Characterization: Viscosity of Synthetic Coal Slag in Steam,” NBSIR 80–2124.

    Google Scholar 

  32. Gray, W. J.: 1980, Radioactive Waste Management, 1, p. 147.

    Google Scholar 

  33. Sanders, D. M. and Haller, W. K.: 1977, J. Amer. Ceram. Soc., 60, p. 3.

    Article  Google Scholar 

  34. Charles, R. J.: 1967, J. Amer. Ceram. Soc., 50, p. 631.

    Article  CAS  Google Scholar 

  35. Horn, F. L.-, Fillo, J. A., and Powell, J. R.: 1979, J. Nucl. Mater., 85, p. 439.

    Article  Google Scholar 

References

  1. Akishin, P. A., Gorokhov, L. N., and Sidorov, L. N.: 1960, Proc. Acad. Sci. USSR, [Dok. Phys. Chem.] 135, 1, p. 1001.

    Google Scholar 

  2. Bloom, H., Hastie, J. W., and Morrison, J. D.: 1968, J. Phys. Chem. 72, p. 3041.

    Article  CAS  Google Scholar 

  3. Dronin, A. A. and Gorokhov, L. N.: 1972, Teplofiz. Vys. Temp. 10, p. 49.

    CAS  Google Scholar 

  4. Dronin, A. A. and Gorokhov, L. N.: 1975, Zh. Fiz. Khim. 49, p. 798.

    CAS  Google Scholar 

  5. Feather, D. H. and Searcy, A. W.: 1971, High Temp. Sci. 3, p. 155.

    CAS  Google Scholar 

  6. Bonnell, D. W. and Hastie, J. W.: 1979, Proc. 10th Matls. Res. Symp. NBS SP-561 p. 357.

    Google Scholar 

  7. Ashkenas, H. and Sherman, F. S.: 1966, Proc. 4th Int. Symp. on Rarefield Gas Dynamics, deLeeuw, J. H., ( Academic Press, New York ) p. 84.

    Google Scholar 

  8. Knuth, E. L.: 1964, Dept. Eng. Rept. 64–53, U. California, Los Angeles.

    Google Scholar 

  9. Stearns, C. A., Kohl, F. J., Fryburg, G. C., and Miller, R. A.: 1979, Proc. 10th Matls. Res. Symp. NBS SP–561 p. 303.

    Google Scholar 

  10. Anderson, J. B. and Fenn, J. B.: 1965, Phys. Fluids, 8, p. 780.

    Article  CAS  Google Scholar 

  11. Hastie, J. W. and Margrave, J. L.: 1968, Fluorine Chem. Rev. 2, p. 77.

    Google Scholar 

  12. Berkowitz, J. and Chupka, W. A.: 1958, J. Chem. Phys. 29, p. 653.

    Article  CAS  Google Scholar 

  13. Milne, T. A. and Klein, H. M.: 1960, J. Chem. Phys. 33, p. 1628.

    Article  CAS  Google Scholar 

  14. Bloom, H. and Hastie, J. W.: 1966, Aust. J. Chem. 19, p. 1003.

    Article  CAS  Google Scholar 

  15. Bloom, H. and Hastie, J. W.: 1968, J. Chem. Phys. 49, p. 2230.

    Article  CAS  Google Scholar 

  16. Gusarov, A. V. and Gorokhov, L. N.: 1968, Zh. Fiz. Khim. 42, p. 860.

    CAS  Google Scholar 

  17. Schoonmaker, R. C. and Porter, R. F.: 1959, J. Chem. Phys. 31, p. 830.

    Article  CAS  Google Scholar 

  18. Hastie, J. W. and Margrave, J. L.: 1969, High Temp. Sci. 1, p. 481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Hastie, J.W., Bonnell, D.W. (1984). Transpiration Mass Spectrometry—A New Thermochemical Tool. In: Ribeiro da Silva, M.A.V. (eds) Thermochemistry and Its Applications to Chemical and Biochemical Systems. NATO ASI Series, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6312-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6312-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6314-6

  • Online ISBN: 978-94-009-6312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics