Skip to main content

Beta-Alumina for Sodium-Sulphur Batteries

  • Conference paper
Ceramics in Advanced Energy Technologies
  • 219 Accesses

Synopsis

This paper aims to review the state-of-the-art concerning the use of beta-alumina ceramics as a solid electrolyte in the sodium-sulphur battery. Design and operating conditions of a sodium-sulphur cell are first outlined leading to specifications for beta-alumina tubes. The various fabrication procedures which have been studied are presented with regard to powder preparation, shaping and sintering. The major problem encountered by the beta-alumina developers is the in-cell durability of the electrolyte tube. Studies on the electrical breakdown which is the main cause of failure have been recently emphasized: failure is usually associated with the penetration or the formation of sodium in the electrolyte or as a general blackening extending from the sodium side. To solve this problem, further research and development on improving the durability and the reliability of beta-alumina tubes are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Jensen, P.Mc Geehin and Dell, Electric batteries for storage and conservation, Odense University Press, 1979.

    Google Scholar 

  2. N. Weber and J.T. Kummer, Adv. Energy Conv. Eng. ASME Conf., Florida, 1967, p. 913.

    Google Scholar 

  3. Ger. Patent 2, 509, 982 (1975).

    Google Scholar 

  4. Chloride Silent Power Ltd, UK Patent 1, 586, 073 (1977).

    Google Scholar 

  5. Compagnie Généra1e d’E1ectricité, French Patent 2, 333, 358 (1975).

    Google Scholar 

  6. General Electric Co., US Patent 4, 110, 516 (1978).

    Google Scholar 

  7. UK Patent 1, 582, 845.

    Google Scholar 

  8. W.L. Bragg, C. Gottfried and J. West, Z. Kristallogr. 77 (1931) 255.

    CAS  Google Scholar 

  9. C.A. Beever and H.A. Ross, Z. Kristallogr. 97 (1937) 59.

    Google Scholar 

  10. M. Bettman and C.R. Peters, J. Phys. Chem. 73 (1969) 1774.

    Article  CAS  Google Scholar 

  11. Y. Yamagushi and K. Suzuki, Bull Chem. Soc. Japan 41 (1968) 93.

    Article  Google Scholar 

  12. Y. Le Cars, J. Thery and R. Collongues, Rev. Int. Hautes Temp. Refract. 9 (1972) 153.

    Google Scholar 

  13. W. Baukal, H.P. Beck, W. Kuhn and R. Siegler in D.H. Collins (Ed.) Power Sources 6, 1976, Academic Press, London (1977) 655.

    Google Scholar 

  14. L.N. Glyzina, V.I. Faddeva and Y.D. Tretyakov, Inorg. Mat. 11 (1975) 927.

    Google Scholar 

  15. S.E. Weiner, Research on electrodes and electrolyte for the Ford sodium-sulphur battery, report on contract NSF-C 805, July 1975.

    Google Scholar 

  16. D.J. Green and S. Hutchinson in P. Vincenzi (Ed.) Energy and Ceramics, Elsevier, Amsterdam 1980, p. 964.

    Google Scholar 

  17. P. Popper, Isostatic Pressing, Heyden, London (1976).

    Google Scholar 

  18. Compagnie Générale d’Electricité, French Patent 2, 401, 119 (1977).

    Google Scholar 

  19. R.W. Powers, S.P. Mitoff, R.N. King and J.C. Bielanski, Solid State Ionics 5, 1981, 287.

    Article  CAS  Google Scholar 

  20. Ford Motor Co. UK Patent 1, 541, 850 (1979).

    Google Scholar 

  21. R.T. Dirstine in P. Vashishta (Ed.), Fast Ion Transport in Solids, 1979, Elsevier, p. 79.

    Google Scholar 

  22. S.R. Tan and G.J. May, Sci. Ceram. 9 (1977).

    Google Scholar 

  23. G.J. May, S.R. Tan and J.W. Jones, J. Mat. Sci. 15 (1980) 2311.

    Article  CAS  Google Scholar 

  24. G. Desplanches, A. Wicker and J.P. Dumas in New Way to Save Energy (CEC ed.) D. REIDEL publishing Co., 1980, p. 558.

    Google Scholar 

  25. W. Haar, W. Fisher, H. Kleinschmager and G. Weddigen, High Temperature Battery Workshop, Argonne National Laboratory, 1976.

    Google Scholar 

  26. J.H. Duncan and W.G. Bugden, Proc. Br. Ceram. Soc. 31 (1981), 221.

    CAS  Google Scholar 

  27. G.J. May, J. Power Sources 3 (1978) 1.

    Article  CAS  Google Scholar 

  28. R.W. Daidge, G. Tappin, J.R. McLaren and G.J. May, Am. Ceram. Soc. Bull 58 (1979) 771.

    Google Scholar 

  29. C.T.H. Stoddart and E.P. Hondros, Trans. Br. Ceram. Sov. 73 (1974) 61.

    CAS  Google Scholar 

  30. J.L. Sudworth, M.D. Hames, M.A. Storey, M.F. AZIM and A.R. TILLEY in D.H. Collins (Ed.) Power Sources 4, Oriel Press, 1972.

    Google Scholar 

  31. R.D. Amstrong, T. Dickinson and J. Turner, Electrochim. Acta 19 (1974) 187.

    Article  Google Scholar 

  32. R.H. Richman and G.J. Tennenhouse, J. Am. Ceram. Soc. 58 (1975) 63.

    Article  CAS  Google Scholar 

  33. D.K. Shetty, A.V. Virkar and R.S. Gordon in R.C. Bradt, P.P. Hasselman and F.F. Lange (Eds.) Fracture mechanics of ceramics, Plenum Press, New-York 1977, p. 651.

    Google Scholar 

  34. A.V. Virkar and L. Viswanathan, J. Am. Ceram. Soc. 62 (1979) 528.

    Article  CAS  Google Scholar 

  35. M.P.J. Brennan, Electrochim. Acta 25 (1980) 621 and 629.

    Article  CAS  Google Scholar 

  36. R.D. Amstrong, D.P. Selhick and S.R. Tan, Solid State Ionics 6 (1982) 203.

    Article  Google Scholar 

  37. D. Gourier, A. Wicker and D. Vivien, Mat. Res. Bull. 17 (1982) 363.

    Article  CAS  Google Scholar 

  38. D. Gourier and A. Wicker, The Electrochem. Soc., 161st Meeting, Montreal, May 1982, Vol. 82-1, p. 1156.

    Google Scholar 

  39. L.C. De Jonghe and A. Buechele, J. Mat. Sci., 17 (1982) 885.

    Article  Google Scholar 

  40. L.C. De Jonghe, J. Electrochem. Soc. Vol. 129, 4 (1982) 753.

    Google Scholar 

  41. L.C. De Jonghe, L. Feldman and A. Buechele, J. Mat. Sci. 16 (1981) 780.

    Article  Google Scholar 

  42. J.R. Rasmussen, G.R. Miller and R.S. Gordon, The Electrochem. Soc., 161st Meeting, Montreal, May 1982, Vol. 82-1, p. 1153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 ECSC, EEC, EAEC, Brussels and Luzembourg

About this paper

Cite this paper

Wicker, A. (1984). Beta-Alumina for Sodium-Sulphur Batteries. In: Kröckel, H., Merz, M., Van Der Biest, O. (eds) Ceramics in Advanced Energy Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6424-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6424-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6426-6

  • Online ISBN: 978-94-009-6424-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics