Skip to main content

Gravitational Radiation and the ‘Quadrupole’ Formula Report of Workshop A1

  • Chapter
General Relativity and Gravitation

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 9))

Abstract

In connection with the quadrupole formula, three related but different questions can be asked: 1) How does the gravitational radiation field (in some wave zone or at future null infinity) of a nearly isolated system depend on the motion and structure of its sources? 2) How is the motion and the structure of a source emitting gravitational waves affected by this emission, i.e. what are the radiative corrections to the source’s motion? 3) Is there a conservation law linking the energy-momentum carried “to infinity” by gravitational radiation to the loss of energy-momentum by the source?

J. Ehlers was the chairman of workshop A1 “Equations of motions, gravitational radiation and asymptotic structure of spacetime” and of the special session on the “quadrupole formula”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.L.: 1979, “Approximation methods in general relativity”, in J. Ehlers (ed.), Isolated Gravitating Systems in General Relativity, Proc. Int. School of Physics ”Enrico Fermi”, Course 67, North-Holland, Amsterdam, pp. 289–306.

    Google Scholar 

  • Anderson, J.L.: 1980, “New derivations of the quadrupole formulas and balance equations for gravitationally bound systems”, Rhys. Rev. Lett., 45, 1745.

    Article  ADS  Google Scholar 

  • Anderson, J.L.: 1984a, “A model calculation of radiation damping by the energy balance method”, to appear in Gen. Rel. Grav. J.

    Google Scholar 

  • Anderson, J.L.: 1984b, “Approximate causal solutions for a class of wave equations with backscatter”, to appear in J. Math. Rhys.

    Google Scholar 

  • Anderson, J.L., and Heyl, A.: 1984, to appear.

    Google Scholar 

  • Anderson, J.L., Kates, E., Kegeles, S., and Madonna, R.G.: 1982, “Divergent integrals of post-Newtonian gravity: nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching”, Rhys. Rev., D25, 2038.

    ADS  Google Scholar 

  • Anderson, J.L., and Madonna, R.G.: 1984, to appear.

    Google Scholar 

  • Chandrasekhar, S., and Lsposito, F.P.: 1970, “The 2½ post-Newtonian equations of hydrodynamics and radiation reaction in general relativity”, Astrophys. J.,160, 153.

    Article  MathSciNet  ADS  Google Scholar 

  • Cooperstock, F.I.: 1974, “Axially symmetric two-body problem in general relativity”, Phys. Rev., D10, 3171.

    MathSciNet  ADS  Google Scholar 

  • Cooperstock, F.I.: 1982a, “Axially symmetric two-body problem in general relativity. IV. Boundary conditions time scales, and the quadrupole formula”, Phys. Rev., D25, 3126.

    ADS  Google Scholar 

  • Cooperstock, F.I.s 1982b, “Replay to the comments of Walker and Will regarding the axially symmetric two-body problem”, Phys. Rev., D25, 3438.

    ADS  Google Scholar 

  • Cooperstock, F.I., and Hobill, D.W.: 1979, “Mass loss and the failure of the quadrupole formula”, Phys. Rev., D20, 2995.

    ADS  Google Scholar 

  • Cooperstock, F.I., and Hobill, D.W.: 1979, “Axially symmetric two-body problem in general relativity. III. Bondi mass loss and the failure of the quadrupole formula”, Phys. Rev., D20, 2995.

    ADS  Google Scholar 

  • Ehlers, J.: 1977, “Weak-field approximations and equations of motion in general relativity”, in R. Ruffini, J. Ehlers, and C.W.F. Everitt (eds), Proc. Int. School of General Relativistic Effects in Physics and As trophy sics: Experiments and Theory Institute Report MPI-PAE/Astro 138, MPI für Astrophysik, D-8046 Garching, FRG.

    Google Scholar 

  • Ehlers, J.: 1981, “Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie”, in J. Nitsch, J. Pfarr, and E.-W. Stochow (eds), Grundlagenprobleme der Modernen Physik, B.I.-Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Fock, V.: 1959, The theory of space, time and gravitation, Pergamon Press, London, p. 342.

    MATH  Google Scholar 

  • Futamase, T.: 1983, “Gravitational radiation reaction in the Newtonian limit”, Phys. Rev., D28, 2373.

    MathSciNet  ADS  Google Scholar 

  • Futamase, T., and Schutz, B.F.: 1983, “Newtonian and post-Newtonian approximations are asymptotic to general relativity”, Phys. Rev., D28, 2363.

    MathSciNet  ADS  Google Scholar 

  • Gürses, M., and Walker, M.: 1984, “A finite slow-motion approximation method for self-gravitating systems”, Phys. Lett., A101, 15.

    ADS  Google Scholar 

  • Kates, R.E.: 1982, “Gravitational radiation reaction in quasi-static axially symmetric systems with possibly strong fields”, Institute Report, Institüt für Astrophysik, MPA20, to appear in Phys. Rev., D.

    Google Scholar 

  • Künzle, H.P., and Nester, J.M.: 1983, “Hamiltonian formulation of gravitating perfect fluids and the Newtonian limit”, Institute Report MPA58, to appear in J. Math. Phys.

    Google Scholar 

  • Morgan, T., and Bondi, H.: 1970, “Transfer of energy in general relativity”, Rroc. Roy. Soc. London, A320, 277.

    MathSciNet  ADS  Google Scholar 

  • Price, R., and Thorne, K.S.: 1969, “Non-radial pulsation of general relativistic stellar models”, II, Astrophys.J., 155, 163.

    Article  ADS  Google Scholar 

  • Schäfer, G.: 1982, “Radiation reaction and energy loss for gravitationally bound systems”, Prog. Theor. Phys., 68, 2191.

    Article  ADS  MATH  Google Scholar 

  • Synge, J.L.: 1970, “Equations of motion in general relativity”, Proa. Res. Inst. Atmos. 69, sect. A, 11–38.

    MathSciNet  MATH  Google Scholar 

  • Thorne, K.S., and Kovacs, J.: 1975, “The generation of gravitational fields, I. Weak-field sources”, Astrophys. J., 200, 245.

    Article  MathSciNet  ADS  Google Scholar 

  • Walker, M., and Will, C.M.: 1982, “Axially symmetric two-body problem of Cooperstock, Lim and Hobill”, Phys. Rev., D25, 3433.

    ADS  Google Scholar 

  • Will, C.M.: 1983, “Tidal gravitational radiation from homogeneous stars”, Astrophys. J, 274, 858.

    Article  ADS  Google Scholar 

  • Winicour, J.: 1983, “Newtonian gravity on the null cone”, University of Pittsburgh preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Ehlers, J., Walker, M. (1984). Gravitational Radiation and the ‘Quadrupole’ Formula Report of Workshop A1. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation. Fundamental Theories of Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6469-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6469-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6471-6

  • Online ISBN: 978-94-009-6469-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics