Skip to main content

Nonlinear and Active Modelling of Cochlear Mechanics: A Precarious Affair

  • Conference paper
Mechanics of Hearing

Abstract

We have developed a numerical solution method for one-dimensional cochlea models in the time domain. The method has particularly been designed for models with a cochlear partition having nonlinear and active mechanical properties. Our starting point is the partial differential equation describing the response of the basilar membrane to stapes movements. Using Galerkin’s principle, we reduce this equation to a system of ordinary differential equations in the time variable. The remaining initial value problem is solved by means of an explicit fourth order Runge-Kutta scheme with a variable-step routine.

The calculations show that the response of an active, nonlinear cochlea model is very much contingent on the solution method. Approaches that exclude or suppress reflection phenomena must be considered inappropriate.

The results obtained so far suggest that nonlinear and active modelling of cochlear mechanics should comply with the following conditions in order to be consistent with experimental data:

  1. ( i)

    The active and nonlinear properties must be tightly linked,

  2. ( ii)

    Omission of these properties must yield the classical description of cochlear macromechanics,

  3. (iii)

    The active behaviour of the partition must be localized in a small longitudinal region of the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boer, E. de (1983a). No sharpening? A challenge for cochlear mechanics, J. Acoust. Soc. Am. 73, 567–573.

    Article  Google Scholar 

  • Boer, E. de (1983b). On active and passive cochlear models — Towards a generalized analysis. J. Acoust. Soc. Am. 73, 574–576.

    Article  Google Scholar 

  • Borsboom, M.J.A. (1979). Linear and nonlinear one-dimensional cochlear models, Eng. D. thesis, Dept. of Mathematics and Informatics, Delft University of Technology.

    Google Scholar 

  • Hall, J.L. (1974). Two-tone distortion products in a nonlinear model of the basilar membrane, J. Acoust. Soc. Am. 56, 1818–1828.

    Article  Google Scholar 

  • Kemp, D.T. (1978). Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am. 64, 1386–1391.

    Article  Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea, Science 215, 305–306.

    Article  Google Scholar 

  • Kim, D.O., Neely, S.T., Molnar, C.E., and Matthews, J.W. (1980). An active cochlear model with negative damping in the partition: Comparison with Rhode’s ante-and postmortem observations. In: Psychophysical, physiological and behavioural studies in hearing. G. van den Brink and F.A. Bilsen (eds.), Delft Univ. Press, 7–15.

    Google Scholar 

  • Neely, S.T. (1981). Fourth order partition mechanics for a two-dimensional cochlear model. Doctoral dissertation, Washington Univ., St. Louis.

    Google Scholar 

  • Neely, S.T. and Kim, D.O. (1983). An active cochlear model showing sharp tuning and high sensitivity. Hearing Res. 9, 123–130.

    Article  Google Scholar 

  • Netten, S.M. van (1982). Een actief, niet-lineair cochlea model (in Dutch), M. Sc. thesis, Dept. of Biophysics, Univ. of Groningen.

    Google Scholar 

  • Netten, S.M. van and Duifhuis, H. (1983). Modelling an active nonlinear cochlea. In: Proc. Mechanics of Hearing, E. de Boer and M.A. Viergever (eds.), Delft University Press/Martinus Nijhoff Publishers, pp. 143–151.

    Google Scholar 

  • Rhode, W.S. (1971). Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique, J. Acoust. Soc. Am. 49, 1218–1231.

    Article  Google Scholar 

  • Rhode, W.S. (1978). Some observations on cochlear mechanics, J. Acoust. Soc. Am. 64, 158–176.

    Article  Google Scholar 

  • Sellick, P.M., Patuzzi, R., and Johnstone, B.M. (1982). Measurement of basilar membrane motion in guinea pig using the Mössbauer technique, J. Acoust. Soc. Am. 72, 131–141.

    Article  Google Scholar 

  • Viergever, M.A. (1980). Mechanics of the inner ear — a mathematical approach. Delft University Press.

    Google Scholar 

  • Viergever, M.A. and Diependaal, R.J. (1983). Simulataneous amplitude and phase match of cochlear model calculations and basilar membrane vibration data. In: Proc. Mechanics of Hearing, E. de Boer and M.A. Viergever (eds.), Delft University Press/Martinus Nijhoff Publishers, pp. 53–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Delft University Press, The Netherlands

About this paper

Cite this paper

Diependaal, R.J., Viergever, M.A. (1983). Nonlinear and Active Modelling of Cochlear Mechanics: A Precarious Affair. In: de Boer, E., Viergever, M.A. (eds) Mechanics of Hearing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6911-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6911-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6913-1

  • Online ISBN: 978-94-009-6911-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics