Skip to main content

Wave produced changes in underwater light and their relations to vision

  • Chapter
Predators and prey in fishes

Part of the book series: Developments in environmental biology of fishes ((DEBF,volume 2))

Synopsis

Maximal visual sensitivity of most vertebrates and invertebrates coincides with the dominant wave-induced flicker frequencies associated with underwater light. Waves also produce patterns off reflective objects that resemble many of the body markings found on fishes. The close relationship that exists between the physiological properties of spatial and temporal vision thus suggests an ancient adaptation to the wave-induced fluctuations and spatial patterns associated with underwater light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  • Ali, M.A. & H. Kobayashi. 1968. Electroretinogram — FFF in albino trout. Experientia 24: 454–455.

    Article  PubMed  CAS  Google Scholar 

  • Alpern, M. 1972. Eye movements, pp. 303–330. In: D. Jameson & L.M. Hurrich (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Autrum, H. 1950. Die Belichtungs-potentiale und das Sehen der Insecten. Z. Vergl. Physiol. 32; 176–227.

    Article  Google Scholar 

  • Autrum, H. 1958. Electrophysiological analysis of the visual systems in insects. Exp. Cell. Res. Suppl. 5: 426–439.

    Google Scholar 

  • Barlow, H.B. 1963. Slippage of contact lenses and other artifacts in relation to: fading and regeneration of supposedly stable retinal images. Quart. J. Exp. Psychol. 15: 36–51.

    Article  Google Scholar 

  • Barlow, H.B. 1969. Stabilized retinal images, pp. 431–439. In: W. Reichardt (ed.) International School of Physics Enrico Fermi, Academic Press, New York.

    Google Scholar 

  • Burr, D.C. & J. Ross. 1982. Contrast sensitivities at high velocities. Vision Res. 22: 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Burrows, M. & G.D. Horridge. 1968. The action of the eyecup muscles of the crab, Carcinus, during optokinetic movement. J. Exp. Biol. 49: 223–250.

    Google Scholar 

  • Campbell, F.W. & L. Maffei. 1974. Contrast and spatial frequency. Sci. Amer. 231: 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, R.H.S. 1977. Movements of the Eyes. Pion Ltd., London. 420 pp.

    Google Scholar 

  • Clark, E. 1981. Sharks magnificent and misunderstood. Nat. Geog. 160: 137–187.

    Google Scholar 

  • Crozier, W.J. & E. Wolf. 1939. The flicker response contour for the gecko (rod retina). J. Gen. Physiol. 22: 555–566.

    Article  PubMed  CAS  Google Scholar 

  • Crozier, W.J. & E. Wolf. 1941a. The flicker response contour for Phrynosoma (horned lizard; cone retina). J. Gen. Physiol. 24: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Crozier, W.J. & E. Wolf. 1941b. The simplex flicker threshold contour for the Zebra finch. J. Gen. Physiol 24: 625–633.

    Article  PubMed  CAS  Google Scholar 

  • DeLange, H. 1958. Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Alternation characteristics with white and colored light. J. Opt. Soc. Amer. 48: 777–784.

    Article  Google Scholar 

  • Denton, E.J. & J.A.C. Nicol. 1966. A survey of reflectivity in silvery teleosts. J. Mar. Biol. Assoc. ( U.K. ) 46: 685–722.

    Article  Google Scholar 

  • Dera, J. & H.R. Gordon. 1968. Light field fluctuations in the photic zone. Limnol. & Oceanogr. 13: 697–699.

    Article  Google Scholar 

  • DeVoe, R. 1966. A non-linear model of sensory adaptation in the eye of the wolf spider, pp. 309–328. In: C.G. Bernard (ed.) The Functional Organization of the Compound Eye, Pergammon Press, Oxford.

    Google Scholar 

  • Dodt, E. & A. Worth. 1953. Differentiation between rods and cones by flicker electroretinography in pigeon or guinea pig. Acta. Physiol. Scand. 30: 80–89.

    Article  PubMed  CAS  Google Scholar 

  • Duntley, S.Q. 1951. The visibility of submerged objects II. Proc. Armed Forces, Nat. Res. Coun. Vision Comm. 28: 60.

    Google Scholar 

  • Easter, S.S., Jr. 1971. Spontaneous eye movements in restrained goldfish. Vision Res. 11: 333–342.

    Article  PubMed  Google Scholar 

  • Fourtes, M.G.F. & A.L. Hodgkin. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. ( London ) 172: 239–263.

    Google Scholar 

  • Fuortes, M.G. & P.M. O’Bryan. 1972. Generator potentials in invertebrate photoreceptors, pp. 279–320. In: M.G. Fuortes (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Gordon, H.R., J.M. Smith & O.B. Brown. 1971. Spectra of underwater light-field fluctuations in the photic zone. Bull Mar. Sci. 21: 466–470.

    Google Scholar 

  • Gramoni, R. & M.A. Ali. 1970. L’Electroretinogramme et la frequence de fusion chez Amia calva (Linne). Rev. Can. Biol. 76: 37–58.

    Google Scholar 

  • Granit, R. 1963. Sensory Mechanisms of the Retina. Hafner Publishing Co., New York. 412 pp.

    Google Scholar 

  • Green, D.G. & I.M. Siegel. 1975. Double branched flicker fusion curves from the all-rod skate retina. Science 188: 1120–1122.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D.I. 1967. An anatomical and electrophysiological study of the retina of the owl monkey, Aotes trivirgatus. J. Comp. Neurol. 130: 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D.I. 1968. The electroretinogram of the intact anesthetized octopus. Vision Res. 8: 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki, D.I. & J. Peregrin. 1970. A blue-sensitive system in the lateral eye of the green iguana. Vision Res. 10: 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Hobson, E.S. 1968. Predatory behavior of some shore fishes in the Gulf of California. Bur. Sport Fish. Wildl. Res. Rep. 73: 1–92.

    Google Scholar 

  • Hobson, E.S. 1979. Interactions between piscivorous fishes and their prey. pp. 231–242. In: H. Clepper (ed.) Predator-prey Systems in Fisheries Management, Sport Fishing Inst., Washington.

    Google Scholar 

  • Jahn, T. & V. Wolff. 1941. Influence of a visual diurnal rhythm on flicker response contours of Dytiscus. Proc. Soc. Exp. Biol. Med. 48: 660–665.

    Google Scholar 

  • Jenssen, T.A. & B. Swenson. 1974. An ecological correlate of critical flicker-fusion frequencies for some Anolis lizards. Vision Res. 10: 965–970.

    Article  Google Scholar 

  • Jerlov, N.G. 1968. Optical Oceanography. Elsevier, London. 194 pp.

    Google Scholar 

  • Johns, P.R. & S.S. Easter, Jr. 1978. Growth of the adult goldfish eye. II. Increase in retinal cell number. J. Comp. Neurol. 176: 331–342.

    Article  Google Scholar 

  • Kelly, D.H. 1959. Effects of sharp edges in a flickering field. J. Opt. Soc. Amer. 49: 730–732.

    Article  CAS  Google Scholar 

  • Kelly, D.H. 1972a. Flicker, pp. 273–302. In: D. Jameson & L.M. Hurvich (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Kelly, D.H. 1972b. Adaptation effects on spatio-temporal sinewave thresholds. Vision Res. 12: 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H. 1962. A comparative study on electroretinogram in fish with special reference to ecological aspects. J. Shimonoseki Coll. Fish. 11: 17–148.

    Google Scholar 

  • Laughlin, S.B. 1980. Neural principles in the visual system, pp. 133–280. In: H. Autrum (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Loew, E.R. 1974. C02-induced changes in the critical fusion frequency of the fly, Sarcophaga bullata. J. Insect Physiol. 20: 1737–1748.

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. 1966. Visual pigments and underwater vision, pp. 375–391. In: R. Bainbridge, G.C. Evans & O. Rackham (ed.) Light as an Ecological Factor, Blackwell, Oxford.

    Google Scholar 

  • Lythgoe, J.N. 1979. The Ecology of Vision. Clarendon Press, Oxford. 244 pp.

    Google Scholar 

  • Maffei, L. 1978. Spatial frequency channels, neuronal mechanisms. pp. 39–66. In: R. Held, H. Leibowitz & H.L. Teuber (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • McFarland, W.N. & F.W. Munz. 1975a. Part II: The photic environment of clear tropical seas during the day. Vision Res. 15: 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • McFarland, W.N. & F.W. Munz. 1975b. Part III: The evolution of photopic visual pigments in fishes. Vision Res. 15: 1071–1080.

    Article  PubMed  CAS  Google Scholar 

  • McFarland, W.N., F.H. Pough, T.J. Cade & J.B. Heiser. 1979. Vertebrate Life. Macmillan, New York. 875 pp.

    Google Scholar 

  • Munz, F.W. & W.N. McFarland. 1977 Evolutionary adaptations of fishes to the photic environment, pp. 193–274. In: F. Crescitelli (ed.) Handbook of Sensory Physiology, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Northmore, D., F.C. Volkmann & D. Yager. 1978. Vision in fishes: color and pattern, pp. 79–136. In: D.I. Mostofsky (ed.) The Behavior of Fish and Other Aquatic animals, Academic Press, New York.

    Google Scholar 

  • Nye, P.W. 1969. The monocular eye movement of the pigeon. Vision Res. 9: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Protasov, V.R. 1968. Vision and Near Orientation of Fish. Israel Prog, for Sci. Translations, 1970, Transl. by M. Raveh. U.S. Dept of Commerce, Washington, D.C. 175 pp.

    Google Scholar 

  • Ratliff, F., B.W. Knight, J. Toyoda & H.K. Hartline. 1967. Enhancement of flicker by lateral inhibition. Science 158: 392–393.

    Article  PubMed  CAS  Google Scholar 

  • Robson, J.G. 1966. Spatial and temporal contrast-sensitivity functions of the visual system. J. Opt. Soc. Am. 56: 1141–1142.

    Article  Google Scholar 

  • Ruck, P. & T.L. Jahn. 1954. Electrical studies on the compound eye of Ligia occidentalis dana ( Crustacea: Isopoda). J. Gen. Physiol. 37: 825–849.

    Article  PubMed  CAS  Google Scholar 

  • Schenck, H. 1957. On the focusing of sunlight by ocean waves. J. Op. Soc. Amer. 47: 653–657.

    Article  Google Scholar 

  • Smith, E.L. III, D A. Witzel & D.G. Pitts. 1976. The waveform and scotopic CFF of the sheep electroretinogram. Vision Res. 16: 1241–1245.

    Article  PubMed  Google Scholar 

  • Snyder, R.L. & J. Dera. 1970. Wave-induced light-field fluctuations in the sea. J. Op. Soc. Amer. 60: 1072–1079.

    Article  Google Scholar 

  • Svaetichin, G. 1956. Receptor mechanisms for flicker and fusion. Acta. Physiol. Scand. 39, Suppl. 134: 47–54.

    Google Scholar 

  • Tamura, T. & I. Hanyu. 1959. The flicker electroretinogram of the carp eye. Bull. Jap. Soc. Sci. Fish. 25: 624–631.

    Article  Google Scholar 

  • van Dorn, W.G. 1974. Oceanography and Seamanship. Dodd, Mead & Co., New York. 481 pp.

    Google Scholar 

  • Walls, G.L. 1967. The Vertebrate Eye and Its Adaptive Radiation. Hafner, New York. 785 pp.

    Google Scholar 

  • Waterman, T.H. 1961. Light sensitivity and vision, pp. 1–64. In: T.H. Waterman (ed.) The Physiology of Crustacea, Academic Press, New York.

    Google Scholar 

  • Witzel, D.A. & E.L. Smith, III. 1976. Unpublished pilot data mentioned In: The waveform and scotopic CFF of the sheep electroretinogram, E.L. Smith III, D.A. Witzel & D.G. Pitts. 1976. Vision Res. 16: 1241–1245.

    Google Scholar 

  • Yarbus, A.L. 1967. Eye Movements and Vision. Plenum Press, New York. 222 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David L. G. Noakes David G. Lindquist Gene S. Helfman Jack A. Ward

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr W. Junk Publishers, The Hague

About this chapter

Cite this chapter

McFarland, W.N., Loew, E.R. (1983). Wave produced changes in underwater light and their relations to vision. In: Noakes, D.L.G., Lindquist, D.G., Helfman, G.S., Ward, J.A. (eds) Predators and prey in fishes. Developments in environmental biology of fishes, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7296-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7296-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7298-8

  • Online ISBN: 978-94-009-7296-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics