Skip to main content

Bottom dynamics in lakes

  • Conference paper
Sediment/Freshwater Interaction

Part of the book series: Developments in Hydrobiology ((DIHY,volume 9))

Abstract

A proper understanding of the bottom dynamic conditions (erosion, transportation, accumulation) in lakes is essential in most sedimentological contexts. Fine cohesive materials generally dominate the open water areas, whereas coarser deposits (sand, gravel) dominate shallow regions where erosion and transportation of fine materials prevail. At present, there is no physical model available which describes the linkage between the energy content of the water-mass and the capacity for sediment entrainment in open water areas. Water-mass energy depends on, e.g. wind direction, duration, velocity, fetch, and the presence of a thermo-cline. Entrainment depends on, e.g. density, compaction, water and organic content of the sediments and the number and type of bottom fauna.

Four different methods are used to determine bottom dynamics, two are site typical and two are lake typical. Site and lake typical methods each include one method based on collected field data and one based on theoretical data. One method, the cone apparatus, is presented for the first time. It consists of two cones, one of which has a narrow angle and the other a wide angle, which are zero adjusted at the sediment surface before being released to penetrate the sediments. The differential cone penetration, refered to as the penetration ratio, is used to indicate the degree of surficial sediment compaction. This simple, inexpensive instrument provides quantitative data on physical sediment characteristics which may be related to bottom dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelsson, V., 1967. The Laitaure delta. A study of deltaic morphology and processes. Geogr. Ann. 49: 1–127.

    Article  Google Scholar 

  • Axelsson, V. & HÃ¥kanson, L., 1975. The relation between mercury distribution and sedimentological environment in Lake Ekoln. Part 4. Deposition of sediment and mercury in 1971 and 1972. UNGI Rapport 35, Univ. of Uppsala. 42 pp.

    Google Scholar 

  • Bagnold, R. A., 1954. The Physics of Blown Sand and Desert Dunes. Methuen, London. 165 pp.

    Google Scholar 

  • Beach Erosion Board, 1972. Waves in inland reservoirs. Techn. Mem 132, Beach Erosion Corps of Engineers, Washington, D.C. 125 pp.

    Google Scholar 

  • Blomqvist, S., 1981. Fysikalisk bottendynamik. Underlag för rÃ¥d och riktlinjer av muddring och muddertippning. Preprint in Swedish, Nat. Swe. Env. Prot. Bd., Stockholm. 11 pp.

    Google Scholar 

  • Fischer, H. B., List, E. J., Hoh, R. C. Y., Imberger, J. & Brooks, N. H., 1979. Mixing in inland and coastal waters. Academic Press, New York. 483 pp.

    Google Scholar 

  • Fisher, J. S., Pickral, J. & Odum, W. E., 1979. Organic detritus particles: initiation of motion criteria. Limnol. Oceanogr. 24: 529–532.

    Article  Google Scholar 

  • Förstner, U. & Wittmann, G. T. W., 1979. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin. 486 pp.

    Google Scholar 

  • Gilbert, R., 1975. Sedimentation in Lillooet lake, British Columbia. Can J. Earth Sci. 12: 1697–1711.

    Article  Google Scholar 

  • Gilbert, R. & Shaw, J., 1980. Sedimentation in proglacial Sun- wapta lake, Alberta. Can. J. Earth Sci. 18: 81–93.

    Article  Google Scholar 

  • HÃ¥kanson, L., 1975. Mercury in Lake Vänern — present status and prognosis. SNV PM 563, Nat. Swe. Env. Prot. Bd, Uppsala. 121 pp.

    Google Scholar 

  • HÃ¥kanson, L., 1977a. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Article  Google Scholar 

  • HÃ¥kanson, L., 1977b. An empirical model for physical parameters of recent sedimentary deposits of Lake Ekoln and Lake Vanern. Vatten 3: 266–239.

    Google Scholar 

  • HÃ¥kanson, L., 1981a. Determination of characteristic values for physical and chemical lake sediment parameters (Accepted by Water Resources Research).

    Google Scholar 

  • HÃ¥kanson, L., 1981b. On lake bottom dynamics — the energy- topography factor. Can. J. Earth Sci. 18: 899–909.

    Article  Google Scholar 

  • HÃ¥kanson, L., 1981c. Lake sediments in aquatic pollution control programs: principles, processes and practical examples. SNV PM 1398, Nat. Swe. Env. Prot. Bd, Uppsala. 242 pp.

    Google Scholar 

  • HÃ¥kanson, L., 1981d. A Manual of Lake Morphometry. Springer-Verlag, Berlin. 78 pp.

    Google Scholar 

  • Hamblin, P. F. & Carmack, E. C., 1978. River-induced currents in a fjord lake. J. geophys. Res. 83: 885–899.

    Article  Google Scholar 

  • Hansebo, S., 1957. A new approach to the determination of the shear strength of clays by the fallcone test. R. Swe. Geol. Inst. Proc. Nr. 14, Stockholm. 47 pp.

    Google Scholar 

  • Hjulström, F., 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris. Bull. Geol. Inst. Uppsala 25: 221–527.

    Google Scholar 

  • Johnson, T. C., 1980. Sediment redistribution by waves in lakes, reservoirs and embayments. In: Stefan, H. (Ed.) Proceedings of Symposium on Surface–Water Impoundments. American Society Civil Engineering (preprint).

    Google Scholar 

  • Kemp, A. L. W., Anderson, T. W., Thomas, R. L. & Mudrochova, P., 1974. Sedimentation rates and recent sediment history of Lakes Ontario, Erie and Huron. J. Sed. Pet. 44: 207–218.

    CAS  Google Scholar 

  • Kemp, A. L. W., Maclnnis, G. A. & Harper, N. S., 1977. Sedimentation rates and a revised sediment budget for Lake Erie. Int. Ass. Great Lakes Res. 3: 221–233.

    Article  Google Scholar 

  • Lastein, E., 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27: 44–49.

    Article  Google Scholar 

  • Ludlam, S. D., 1974. Fayetteville Green Lake, New York. 6. The role of turbidity currents in lake sedimentation. Limnol. Oceanogr. 19: 656–664.

    Article  Google Scholar 

  • Lüthi, S., 1980. Some new aspects of two-dimensional turbidity currents. Sedimentology 28: 97–105.

    Article  Google Scholar 

  • McCall, P. L., 1979. The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments. J. Sed. Pet. 49: 813–818.

    Google Scholar 

  • McCall, P. L. & Fisher, J. B., 1980. Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In: Brinkhurst, R. O. & Cook, D. G. (Eds.) Aquatic Oligochaete Biology, pp. 253–317. Plenum Press, New York.

    Google Scholar 

  • Moeller, R. E. & Likens, G. E., 1978. Seston sedimentation in Mirror Lake, New Hampshire, and its relationship to long-term sediment accumulation. Verh. int. Verein. Limnol. 20: 525–530.

    Google Scholar 

  • Norrman, J. O., 1964. Lake Vättern. Investigations on shore and bottom morphology. Geogr. Ann. 46: 1–238.

    Google Scholar 

  • Nydegger, P., 1976. Strömungen in Seen: Untersuchungen in situ und an nachgebildeten Modellseen. Beitr. Geol. Schweiz. Kl. Mitt. 66: 141–177.

    Google Scholar 

  • Pharo, C. H. & Carmack, E. C., 1979. Sedimentation processes in a short residence–time intermontane lake, Kamloops Lake, British Columbia. Sedimentology 26: 523–541.

    Article  Google Scholar 

  • Sly, P. G., 1978. Sedimentary processes in lakes. In: Lerman, A. (Ed.) Lakes-Chemistry, Geology, Physics, pp. 65–89. Springer-Verlag, New York.

    Google Scholar 

  • Sturm, M. & Matter, A., 1978. Turbidities and varves in Lake Briensz (Switzerland): deposition of elastic detritus by density currents. Spec. Publ. Int. Ass. Sediment. 2: 147–168.

    Google Scholar 

  • Sundborg, Ã…., 1956. The River Klarälven. A study of fluvical processes. Geogr. Ann. 38: 125–316.

    Article  Google Scholar 

  • Terwindt, J. H. J., 1977. Deposition, transportation and erosion of mud. In: Golterman, H. L. (Ed.) Interactions between Sediments and Fresh Water, pp. 19–24. Dr. W. Junk, The Hague.

    Google Scholar 

  • Tutin, W., 1955. Preliminary observations on a year’s cycle of sedimentation in Windermere, England. Mem. 1st. Ital. Id-robiol. Suppl. 8: 467–484.

    Google Scholar 

  • Welch, P. S., 1948. Limnological Methods. The Blakiston Co., Philadelphia. 381 pp.

    Google Scholar 

  • Wright, R. F. & Nydegger, P., 1980. Sedimentation of detrital particulate matter in lakes: influence of currents produced by inflowing rivers. Water Resources Res. 16: 597–601.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter G. Sly

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr W. Junk Publishers, The Hague

About this paper

Cite this paper

HÃ¥kanson, L. (1982). Bottom dynamics in lakes. In: Sly, P.G. (eds) Sediment/Freshwater Interaction. Developments in Hydrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8009-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8009-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8011-2

  • Online ISBN: 978-94-009-8009-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics