Skip to main content

Summary

Over the last 30 years, major advances have been made in understanding the basic metallurgy of titanium and this knowledge has been exploited fully in the continued development of improved alloys, particularly for creep resistant applications.

These developments have been matched by corresponding improvements in process technology and quality assurance and the industry has responded fully to the increasingly stringent demands of the gas turbine manufacturers for materials of the highest possible quality and integrity, especially for critical rotating components.

The future for titanium will be influenced by developments in new processes and new products. The search for improvements in processing will be aimed broadly at increasing the level of material utilisation from raw material to finished product form. Product development will be concerned mainly with raising the temperature at which new titanium alloys can operate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McQuillan, A. D. and McQuillan, M. K. (1956). Metallurgy of the Rarer Metals. 4: Titanium, Butterworths Scientific Publications, London, p. 140.

    Google Scholar 

  2. IMI Titanium (1978). Commercially Pure Titanium, Kynoch Press, Birmingham.

    Google Scholar 

  3. Blenkinsop, P. A. and Goosey, R. E. (1970). Study of the age hardening reaction in titanium—\(2\frac{1}{2}\% \)copper, in: The Science, Technology and Application of Titanium Pergamon Press, Oxford, pp. 783–93.

    Google Scholar 

  4. Goosey, R. E. (1970). Heat treatment of engineering components, Publication 124, ISI, London.

    Google Scholar 

  5. Borradaile, B. and Jeal, R. H. (1981). Critical review on mechanical properties, in: Proc. 4th Int. Conf. on Titanium, Kyoto, 1980 to be published.

    Google Scholar 

  6. Postans, P. J. and Jeal, R. H. (1978). Dependence of crack growth performance upon structure in β-processed titanium alloys, in: Forging and Properties of Aerospace Materials, Metals Society, London, pp. 192–8.

    Google Scholar 

  7. Morton, P. H. (1976). Phil. Trans. R. Soc. 282, p. 401.

    Article  CAS  Google Scholar 

  8. Goosey, R. E. (1972). Heat treatment aspects of joining titanium-based materials, in: Heat treatment aspects of metal-joining processes, ISI, London, pp. 61–7.

    Google Scholar 

  9. Vaughan, R. F. (1981). Properties of welded titanium alloys and their application in the aerospace industry, in: Proc. 4th Int. Conf. on Titanium, Kyoto, 1980 to be published.

    Google Scholar 

  10. Crossley, F. A. and Carew, W. F. (1957). Trans. AIME 209, p. 43.

    Google Scholar 

  11. Rosenberg, H. W. (1970) Titanium alloying in theory and practice, in:The Science, Technology and Application of Titanium Pergamon Press, Oxford, pp.851–9.

    Google Scholar 

  12. Wood, R. A. and Favor, R. J. (1972). Titanium metals handbook MCIC-HB-02, Metal and Ceramics Information Centre, Columbus, Ohio, 1–20: 72–8.

    Google Scholar 

  13. Gurney, J. B., Peterson, V. C. and Dulus, E. J. (1969). Metal Prog. 96, p. 121.

    Google Scholar 

  14. Bohanke, E. (1973). Deep hardenable titanium alloys for large airframe elements, in:Titanium Science and Technology, Vol. 3, Plenum Press, New York, p. 1993.

    Google Scholar 

  15. Anon. (1954). Mod. Metals 10, p. 94.

    Google Scholar 

  16. Harris, G. T., Child, H. C. and Dalton, A. C. (1959). J. Inst. Metals 88, p. 112.

    Google Scholar 

  17. Kehoe, M. and Broomfield, R. W. (1973). The mechanisms by which certain solute elements improve the creep strength of alpha titanium, in: Titanium Science and Technology Vol. 4, Plenum Press, New York, p. 2167.

    Google Scholar 

  18. Winstone, M. R., et al. (1975). J. Less Common Metals, 39, p. 205.

    Article  CAS  Google Scholar 

  19. Meetham, G. W. (1976). Metallurgist Mater. Technologist, 8, pp. 589–93.

    CAS  Google Scholar 

  20. Duncan, R. M. and Hubbard, R. T. J. (1973). Applications of high strength alloy Ti-4Al-4Mo-2Sn-0–5Si in European aircraft projects, in: Titanium Science and Technology, Vol. 1, Plenum Press, New York, pp. 91–103.

    Google Scholar 

  21. Fentiman, W. P., et al. (1970). Exploitation of a simple alpha titanium alloy base in the development of alloys of diverse mechanical properties, in: The Science, Technology and Application of Titanium Pergamon Press, Oxford, pp. 987–99.

    Google Scholar 

  22. Rosenberg, H. W. Titanium alloying in theory and practice, Ibid, p. 851.

    Google Scholar 

  23. Neal, D. F. and Blenkinsop, P. A. (1981). Effect of heat treatment on the microstructure and properties of IMI 685, in: Proc. 3rd Int. Titanium Conf., Moscow, 1976 to be published.

    Google Scholar 

  24. Seagle, S. R. and Bomberger, H. B. (1970). Creep resistant titanium alloys, in: The Science, Technology and Application of Titanium Pergamon Press, Oxford, p. 1001.

    Google Scholar 

  25. Paris, W. M. and Russell, H. A. (1973). A new titanium alloy for elevated temperature application, in: Titanium Science and Technology Vol. 4, Plenum Press, New York, p. 2219.

    Google Scholar 

  26. Hall, J. A., et al. (1972). Mater. Sci. Engng., 9, p. 197.

    Article  CAS  Google Scholar 

  27. General Electric (1973). Ti-17 alloy, Data sheet AEG 700, General Electric Co, Sunnyvale, California, USA.

    Google Scholar 

  28. Farthing, T. W. (1977). Introducing a new material—the story of titanium, in: Proceedings 1977, Vol. 191, Mechanical Engineering, Bury St. Edmunds, UK.

    Google Scholar 

  29. Weisirst, E. D. and Stacher, G. W. (1977). Metal Prog. 111 pp. 33–7.

    Google Scholar 

  30. Agard (1976). Conf. Proc. 200, AGARD, Neuilly-sur-Seine, France.

    Google Scholar 

  31. Neal, D. F. (1978). A comparison of structure and properties of similarly processed a α + β and near α a titanium alloys, in: Forging and Properties of Aerospace Materials, Metals Society, London, p. 199.

    Google Scholar 

  32. Neal, D. F., Blenkinsop, P. A. and Goosey, R. E. (1981). Effect of heat treatment on the structure and properties of I MI 829, in: Proc. 4th Int. Titanium Conf, Kyoto, 1980, to be published.

    Google Scholar 

  33. Postans, P. and Jeal, R. H. Influence of forging route and heat treatment on the recrystallisation of a commercial titanium alloy, Ibid.

    Google Scholar 

  34. Postans, P., et al. Process development and evaluation of gas turbine engine components in IMI 829, Ibid.

    Google Scholar 

  35. Anon. (1976). Aviat. Week Space Technology, 104, p. 54.

    Google Scholar 

  36. Fujishiro, J. and Eylan, D. (1978). Thin Solid Films, 54, p. 309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Duncan, R.M., Blenkinsop, P.A., Goosey, R.E. (1981). Titanium Alloys. In: Meetham, G.W. (eds) The Development of Gas Turbine Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8111-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8111-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8113-3

  • Online ISBN: 978-94-009-8111-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics