Skip to main content

Characteristics of Metastasizing and Non-Metastasizing Tumors and Their Interaction with the Host Immune System in the Development of Metastasis

  • Chapter
Metastasis

Part of the book series: Developments in Oncology ((DION,volume 4))

  • 73 Accesses

Abstract

Most animal solid tumors grow expansively at the site of origin without invading the surrounding soft tissue stroma or metastasizing to distant organs, even when they become very large. On the other hand, the single most critical attribute of human cancers is their capacity to invade and metastasize to vital secondary organs resulting in death of the patient. However, the lack of invasion and metastasis in laboratory animal tumors is not because the tumor cells do not enter into the systemic circulation of the host, for a large number of viable tumor cells are readily harvested from the venous as well as the arterial blood of animals bearing a localized tumor (Kim, 1966; Butler and Gullino, 1975), and yet such cells seem incapable of establishing secondary colonies. Thus, there seems to be fundamental difference in the biological property between human and animal tumor cells, and At may lie in the manner by which these tumors are developed. Laboratory investigators in general tend to favor fast growing tumors with a short latent period irrespective of the type of oncogenic agents used. Such tumors are frequently highly immunogenic (Prehn, 1975), due probably to insufficient time for the developing tumor cells to undergo immunological and other host-generated selective processes. Human cancers, on the other hand, particularly carcinomas are usually a late event in our life, and also most of them are non-immunogenic. Such characteristics are likely to have been brought about by more subtle oncogenic exposures and by repeated selective pressures produced by host immune surveillance mechanism during the life of patients. These suppositions were experimentally tested in young adult female rats by exposing them to chemical carcinogen together with the application of non-specific and specific immuno-suppression and stimulation to bring out weakly or non-immunogenic tumor cells slowly over an extended period of time. Such laboratory manipulation yielded many spontaneously metastasizing rat mammary carcinomas with many of their characteristics similar to those of breast cancer in women (Kim, 1970, 1977). Table 1 lists 9 representatives of such tumors that have been established and are maintained in the highly inbred strain of W/Fu rats in our laboratory to carry out various studies outlined in this paper. In order to learn the nature of metastatic potential of tumor cells, their biological, biochemical and immunological properties were compared with those of conventional, non-metastasizing, chemically-induced, syngeneic rat tumors that had been matched according to the degree of glandular differentiation and growth rate in normal syngeneic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, R. W., 1973. Immunological aspects of chemical carcinogenesis. Adv. Cancer Res., 18: 1–75.

    Article  PubMed  CAS  Google Scholar 

  • Bernacki, R. and Kim, U., 1977. Concomitant elevation in sialyltransferase activity and sialic acid content in rats with metastasizing mammary tumors. Science, 195: 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Butler, T. P. and Gullino, P. M., 1975. Quantitation of cell shedding into efferent blood of mammary carcinoma. Cancer Res., 35: 512–516.

    PubMed  CAS  Google Scholar 

  • Chatterjee, S. and Kim, U., 1977. Galactosyltransferase activity in metastasizing and nonmetastasizing rat mammary carcinomas and its possible relationship with tumor cell surface antigen shedding. J.Natl.Cancer Inst., 58: 273–280.

    PubMed  CAS  Google Scholar 

  • Ibid., 1978. Fucosyltransferase activity in metastasizing and nonmetastasizing rat mammary carcinomas. J.Natl.Cancer Inst., 61: 151–162.

    Google Scholar 

  • Folkman, J., 1975. Tumor angiogenesis. In: F.F. Becker (editor), Cancer, a Comprehensive Treatise. Plenum Press, New York, pp. 355–388.

    Google Scholar 

  • Ghosh, S., Grossberg, A., Kim, U. and Pressman, D., 1978. Identification and purification of an organ specific, tumor membrane-associated antigen from a spontaneously metastasizing rat mammary carcinoma. Immunochemistry, 15: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Ibid., 1979. A tumor-associated organ specific antigen in rat mammary carcinoma, present at high levels in metastatic and at low levels in nonmetastatic tumors. J. Natl. Cancer Inst., 62: 1229–1233.

    Google Scholar 

  • Horng, C. and McLimans, W., 1975. Primary suspension culture of calf anterior pituitary cells on a microcarrier surface. Biotech. Bioengin., 17: 713–732.

    Article  Google Scholar 

  • Jirtle, R., Clifton, K.H. and Rankin, J.H.G., 1978. Measurement of mammary tumor blood flow in unanesthetized rat. J.Natl.Cancer Inst., 60: 881–886.

    PubMed  CAS  Google Scholar 

  • Kim, U., 1966. Factors controlling metastasis of experimental breast cancer. Cancer Res., 26: 462–464.

    Google Scholar 

  • Ibid., 1970. Metastasizing mammary carcinomas in rats: Induction and study of their immunogenicity. Science, 67: 72–74.

    Google Scholar 

  • Ibid., 1977. Pathogenesis of spontaneously metastasizing mammary carcinomas in rats. Gann Monogr., 20: 73–81.

    Google Scholar 

  • Ibid., 1979. Factors influencing metastasis of breast cancer. In: W.L. McGuire (editor), Breast Cancer, vol. 3, Current Topics. Plenum Press, N.Y., pp. 1–49.

    Google Scholar 

  • Kim, U., Baumler, A., Carruthers, C. and Bielat, K., 1975. Immunological escape mechanism in spontaneously metastasizing tumors. Proc. Natl. Acad. Sci. USA, 72: 1012–1016.

    Article  PubMed  CAS  Google Scholar 

  • Kim, U., Han, T., Ghosh, Freedman, V.H., Shin, S.I. and Pressman, D., 1980. Immunological mechanisms of selective graft resistance to certain malignant tumors and prevention of metastasis by athymic nude mice. In: N. Reed (editor), 3rd Internatl. Workshop on Nude Mice. Gustav-Fisher Verlag, New York, in press.

    Google Scholar 

  • Prehn, R.T., 1975. The relationship of tumor immunogenicity to the concentration of the inducing oncogen. J. Natl. Cancer Inst., 55: 189–190.

    PubMed  CAS  Google Scholar 

  • Rygaard, J., 1973. Thymus and Self: Immunology of the Mouse Mutant Nude. Wiley, New York.

    Google Scholar 

  • Sharkey, F. E. and Fogh, J., 1979. Metastasis of human tumors in athymic nude mice. Int. J. Cancer, 24: 733–738. (This work was supported in part by the grant CA-24215 from the National Cancer Institute, U.S. Public Health Service.)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, U. (1980). Characteristics of Metastasizing and Non-Metastasizing Tumors and Their Interaction with the Host Immune System in the Development of Metastasis. In: Hellmann, K., Hilgard, P., Eccles, S. (eds) Metastasis. Developments in Oncology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8925-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8925-2_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8927-6

  • Online ISBN: 978-94-009-8925-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics