Skip to main content

Differentiable Deformations of the Poisson Bracket Lie Algebra

  • Chapter
Harmonic Analysis and Representations of Semisimple Lie Groups

Part of the book series: Mathematical Physics and Applied Mathematics ((MPAM,volume 5))

  • 319 Accesses

Abstract

In the first chapter, we dealt only with Lie algebra deformations. Here, for differentiable deformations, it will be appropriate to treat also deformations of associative algebras - which of course will generate Lie algebra deformations. The theory of deformations for associative algebras follows exactly the same pattern as for Lie algebras, the connection with the second and third (associative algebra) Hochschild cohomology groups, the algebra acting on itself by left and right multiplication, being the same; so we shall not repeat it. (Actually the original paper of Gerstenhaber [2] was formulated in the associative algebra context, with a remark that the Lie algebra case was similar.) The main difference is that these groups are so large in the associative case that it is then even more difficult to obtain concrete results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references to chapters 1 and 2

  1. Chevalley, C., and Eilenberg, S, Trans. Amer. Math. Soc. 63 (1948), 85–124.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gerstenhaber, M., Ann. Math. 79 (1964), 59–103.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., ‘Deformation theory and quantization: I. Deformations of symplectic structures’, Ann. Phys. (N.Y.) 111 (1978), 61–110; cf. also Lett. Math. Phys. 1 (1977), 521–530.

    Article  MathSciNet  ADS  Google Scholar 

  4. Lichnerowicz, A., J. Math. Pures et Appl. 53 (1974), 459–484.

    MathSciNet  Google Scholar 

  5. Flato, M., Lichnerowicz, A., and Sternheimer, D., Compositio Mathematica 31 (1975), 47–82.

    MathSciNet  MATH  Google Scholar 

  6. Avez, A., and Lichnerowicz, A., C.R. Acad. Sc. Paris 275 (1972), A. 113–118.

    MathSciNet  MATH  Google Scholar 

  7. Nijenhuis, A., Indag. Math. 17 (1955), 396–403. The bracket can be defined in the following way: if A (resp. B is a p-tensor (resp. q-tensor), [A, B] is the (p + q − 1 tensor defined by the relation: \(i([A,\,B])\beta = {( - 1)^{pq\, + }}^qi(A)\,{\text{d}}i(B)\beta \, + \,{( - 1)^p}i(B)\,{\text{d}}i(A)\beta\) for every closed (p + q − 1) form β in particular, for p = 1, [A, B] = ℒ(A)B, where ℒ is the Lie derivative.

    MathSciNet  Google Scholar 

  8. Lichnerowicz, A., J. Diff Geom. 12 (1977), 253–300.

    MathSciNet  MATH  Google Scholar 

  9. Vey, J., Commentarii Math. Helvet. 50 (1975), 421–454.

    Article  MathSciNet  MATH  Google Scholar 

  10. Moyal, J., Proc. Cambridge Phil. Soc. 45 (1949), 99.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Flato, M., Lichnerowicz, A., and Sternheimer, D., C.R. Acad. Sc. Paris 283 (1976), A 19–24.

    MathSciNet  MATH  Google Scholar 

  12. Gutt, S., ‘2e and 3e espace de cohomologie differentiable de l’algèbre de Lie de Poisson d’une variété symplectique’, Brussels University preprint (1979).

    Google Scholar 

  13. Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, Interscience N.Y., 1963.

    Google Scholar 

  14. Mehta, C. L., J. Math. Phys. 5 (1964) 677.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Gutt, S., Lett. Math. Phys. 3 (1979), 297.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Lichnerowicz, A, C. R. Acad. Sci Paris 289 (1979).

    Google Scholar 

  17. Neroslavsky, O. M and Vlasov, A. T. (to be published).

    Google Scholar 

  18. Lichnerowicz, A., Lett. Math. Phys. 2 (1977), 133.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Agarwal, G. S., and Wolf, E. Phys. Rev. D2 (1970), 2161–2225.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

J. A. Wolf M. Cahen M. De Wilde

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Flato, M., Sternheimer, D. (1980). Differentiable Deformations of the Poisson Bracket Lie Algebra. In: Wolf, J.A., Cahen, M., De Wilde, M. (eds) Harmonic Analysis and Representations of Semisimple Lie Groups. Mathematical Physics and Applied Mathematics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8961-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8961-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8963-4

  • Online ISBN: 978-94-009-8961-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics