Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 96))

Abstract

The ability to utilize single molecules that function as self-contained electronic devices has motivated researchers around the world for years, concurrent with the continuous drive to minimize electronic circuit elements in semiconductor industry. The microelectronics industry is presently close to the limit of this minimization trend dictated by both laws of physics and the cost of production. It is possible that electronically functional molecular components can not only address the ultimate limits of possible miniaturization, but also provide promising new methodologies for novel architectures, as well as nonlinear devices, and memories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Section I

  1. A. Aviram, Eds., Molecular Electronics-Science and Technology, American Institute of Physics, 1991.

    Google Scholar 

  2. R.R. Birge, Eds., Molecular and Biomolecular Electronics, American Chemical Society, 1991.

    Google Scholar 

  3. A. Aviram, and M.A. Ratner, Annals of the New York Academy of Sciences, Vol. 852, Molecular Electronics: Science and Technology, The New York Academy of Sciences, New York, 1998.

    Chapter  Google Scholar 

References, Section II

  1. J. McMurry, Organic Chemistry, Brooks/Cole Publishing Company, 1996.

    Google Scholar 

  2. J.S. Schumm, D.L. Pearson, J.M. Tour, “Iterative Divergent/Covergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128 Å-Long Potential Molecular Wire”, Angew. Chem. Int. Ed. Engl. 33, 1360–1363 (1994).

    Article  Google Scholar 

  3. J.M. Tour, R. Wu, and J.S. Schumm, “Extended Orthogonally Fused Conducting Oligomers for Molecular Electronic Devices”, J. Am. Chem. Soc. 113, 7064–7066 (1991).

    Article  CAS  Google Scholar 

  4. J.C. Ellenbogen, J.C. Love, “Architectures for molecular electronic computers: 1. Logic structures and an adder built from molecular electronic diodes”, Mitre, 1999.

    Google Scholar 

  5. T.A. Skotheim, Ed., “Handbook of Conducting Polymers”, Marcel Dekker, New York (1986).

    Google Scholar 

  6. D.D.C. Bradley, “Molecular electronics-aspects of the physics”, Chem. In Britain, 719, August, 1991.

    Google Scholar 

  7. M.F. Rubner, “Conjugated polymeric conductors”, in Molecular Electronics, G.J. Ashwell, Eds., John Wiley & Sons Inc, New York, 1992.

    Google Scholar 

  8. S. Kivelson, Phys. Rev. B 25, 3798 (1982).

    Article  CAS  Google Scholar 

  9. D. Emin, in Handbook of Conducting Polymers, Vol. 2, p915, T.A. Skotheim, Ed., Marcel Dekker, New York (1986) and references therein.

    Google Scholar 

  10. R.R. Chance, J.L. Bredas, R. Silbey, Phys. Rev. B 29, 4491 (1984).

    Article  CAS  Google Scholar 

  11. N.F. Mott and E.A. Davis, “Electronic Processes in Non-Crystalline Materials”, Clarendon, Oxford, (1979).

    Google Scholar 

  12. P. Sheng, B. Abeles, Y. Arie, Phys. Rev. Lett. 31, 44 (1973).

    Article  CAS  Google Scholar 

  13. MA. Ratner, B. Davis, M. Kemp, V. Mujica, A. Roitberg and S. Yaliraki, “Molecular wires: charge transport, mechanisms and control”, Annals of the New York Academy of Sciences 852, 22 (1998).

    Article  CAS  Google Scholar 

  14. M. Magoga and C. Joachim, “Conductance and transparency of long molecular wires”, Phys. Rev. B 56, 4722(1997).

    Article  CAS  Google Scholar 

  15. MA. Ratner, J. Phys. Chem. 94, 4877 (1990).

    Article  CAS  Google Scholar 

  16. J.W. Evensonand, M. Karplus, Science 262, 1247(1993).

    Article  Google Scholar 

  17. M.P. Samanta, W. Tian, S. Datta, J.I. Henderson, C.P. Kubiak, “Electronic conduction through organic molecules”, Phys. Rev. B 53, R7636 (1996).

    Article  Google Scholar 

  18. R. Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction”, IBM J. Res. Dev. 1, 223(1957).

    Article  Google Scholar 

  19. S. Datta, “Electronic transport in mesoscopic systems”, Cambridge University Press, Cambridge, England, 1995.

    Google Scholar 

  20. C. Zhou et al, “Mescoscopic phenomena studied with mechanically controllable break junctions at room temperature”, in Molecular Electronics, Eds. J. Jortnerand M. Ratner, Blacwell Science, Oxford, United Kingdom, 1997.

    Chapter  Google Scholar 

  21. J.I. Pascual et al, “Properties of metallic nanowires: from conductance quantization to localization”. Science 267, 1703(1995).

    Article  Google Scholar 

  22. S.J. Tans el al, “Individual single-wall carbon nanotubes as quantum wires”, Nature 386, 474 (1997).

    Article  CAS  Google Scholar 

  23. G. Neofotistos, R. Lake, S. Datta, Phys. Rev. B 43, 2442 (1991).

    Article  Google Scholar 

  24. G.L. Closs etal, J. Am. Chem. Soc. 110, 2652(1988).

    Article  CAS  Google Scholar 

  25. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  26. R.M. Metzger, et al. J. Am. Chem. Soc. 119, 10455–10466 (1997).

    Article  CAS  Google Scholar 

  27. M.A. Reed, U.S. Patent No. 5,475, 341 (December 12, 1995).

    Google Scholar 

  28. M.A. Reed, U.S. Patent No. 5,589, 629 (December 31, 1996).

    Google Scholar 

  29. C.J. Muller, Ph. D. thesis, Leiden, 1991.

    Google Scholar 

  30. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  31. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Phys. Rev. B 59, 12505(1999).

    Article  CAS  Google Scholar 

  32. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997).

    Article  CAS  Google Scholar 

  33. K.S. Rails, R.A. Buhrman and T.C. Tiberio, Fabrication of thin film metal nanobridges, Appl. Phys Lett. 55, 2459(1989).

    Article  Google Scholar 

  34. J. Chen et al, Chem. Phys. Lett. 313, 741 (1999).

    Article  CAS  Google Scholar 

  35. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552(1999).

    Article  PubMed  CAS  Google Scholar 

  36. M.A. Reed, J. Chen et al., “Prospects for M olecular-Scale D evices”, 1999 1 nternational E lectron Device Meeting, Washington, DC, Dec. 1999.

    Google Scholar 

  37. G. Binnig, H. Rohrer, C. Gerber, H. Weibel, Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  38. D.M. Eigler and E.K. Schweizer, Nature 344, 524 (1990).

    Article  CAS  Google Scholar 

  39. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour and P.S. Weiss, Science 271, 1705 (1996).

    Article  CAS  Google Scholar 

  40. M. Dorogi, J. Gomez, R. Osifchin, R.P. Andres, and R. Reifenberger, Room-temperature Coulomb blockade from a self-assembled molecular nanostructures, Phys. Rev. B 52, 9071 (1995).

    Article  CAS  Google Scholar 

  41. A. Aviram, “Molecules for Memory, Logic, and Amplification”, J. Am. Chem. Soc. 110 5687–5692 (1988).

    Article  CAS  Google Scholar 

  42. J.J. Hopfield, J. Nelson, D. Beratan, “ A Molecular Shift Register Based on Electron Transfer” Science 241, 817–819(1988).

    Article  PubMed  CAS  Google Scholar 

References, Section III

  1. (a) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627–630. (b) Stephens, R.D.; Castro, C.E. J. Org. Chem. 1963, 28, 3313-3315. (c) Suffert, J.; Ziessel, R. Tetrahedron Lett. 1991. 32, 757-760. (d) Blum, J.; Baidossi, W.; Badrieh, Y.; Hoffmann, R.E.; Schumann, H. J. Org. Chem. 1995, (50,4738-4742.

    Google Scholar 

  2. Pearson, D. L; Tour, J.M. J. Org. Chem. 1997, 62, 1376–1387.

    Article  CAS  Google Scholar 

  3. Adams, R.D.; Barnard, T.; Rawlett, A.; Tour, J.M. Eur. J. Inorg. Chem. 1998, 429–431.

    Google Scholar 

  4. Seminario J.M.; Zacarias A.G.; Tour J.M. J. Am. Chem. Soc. 1998 120 3970–3974

    Google Scholar 

  5. Satyamurthy, N.; Barrio, J.R.; Bida, G.T.; Phelps, M.E. Tetrahedron Lett. 1990, 31, 4409–412.

    Article  CAS  Google Scholar 

  6. Jones, L, II; Schumm, J.S.; Tour, J.M. J. Org. Chem. 1997, 62, 1388–1410.

    Google Scholar 

  7. Allara, D. L; Dunbar, T.D.; Weiss, P.S.; Bumm, L.A.; Cygan, M.T.; Tour, J. M; Reinerth, W.A.; Yao, Y.; Kozaki, M.; Jones, L., II. Anna. N.Y. Acad. Sci., Molecular Electronics: Science and Technology; Aviram, A.; Ratner, M., Eds.; Ann. N.Y. Acad. Sci., 1998, Vol. 852, pp. 349–370.

    Google Scholar 

  8. (a) Brown, R.; Jones, W.E.; Pinder, A.R. J. Chem. Soc. 1951, 2123–2125. (b) Bordwell, F.G.; Hewett, W.A. J. Org. Chem. 1957, 22,980-981.

    Google Scholar 

  9. Tour, J.M.; Kozaki, M.; Seminario, J.M. J. Am. Chem. Soc. 1998, 120, 8486–8493.

    Article  CAS  Google Scholar 

  10. (a) Gobble, G.W.; Leese, R.M. Synthesis 1977, 172–176. (b) Gribble, G.W.; Kelly, W.J.; Emery, S. E. Synthesis 1978, 763-765. (c) Gribble, G.W.; Nutaitis, C.F. Tetrahedron Lett. 1985, 6023-6026.

    Google Scholar 

  11. (a) Yao, Y.; Tour, J.M. Macromolecules 1999, 32, 2455–2461. (b) Lamba, J.J.S.; Tour, J.M. J. Am. Chem. Soc. 1994, 116, 11723-11736.

    Article  CAS  Google Scholar 

  12. Olah, G.A.; Arvanaghi, M.; Ohannesian, L. Synthesis 1986, 770–772.

    Google Scholar 

  13. Moroni, M.; Le Moigne, J.; Pham, T.A.; Bigot, J.-Y. Macromolecules, 1997, 30, 1964–1972.

    Google Scholar 

  14. Seminario, J.M.; Zacarias, A.G.; Tour, J.M. J. Am. Chem. Soc. 2000, 122, 3015–3020.

    Google Scholar 

  15. Cacchi, S.; Fabrizi, G. Moro, L. J. Org. Chem. 1997, 62, 5327–5332 and references thereinnr].

    Article  CAS  Google Scholar 

  16. Appel, R.; Kleinstück, R.; Ziehn, K-D. Angew. Chem., Int. Ed. Engl. 1971, 10, 132.

    Google Scholar 

  17. (a) Collier, C.P.; Wong, E.W.; Belohradský, M.; Raymo, F.M.; Stoddart, J.F.; Kuekes, P.J.; Williams, R.S.; Heath, J.R. Science 1999, 285, 391–394. (b) Collier, C.P.; Mattersteig, G.; Wong, E.W.; Luo, Y.; Beverly, K.; Sampaio, J.; Raymo, F.M.; Stoddart, J.F.; Heath, J.R. Science 2000, 289, 1172-1175. Heath et al., are currently evaluating the efficacy of 91 in their assembled system, (c) Metzger, R.M.; Chen, B.; Hopfner, U.; Lakshmikantham, M.V.; Vuillaume, D.; Kawai,T.; Wu, X.; Tachibana, H.; Hughes, T.V.; Sakurai, H.; Baldwin, J.W.; Hosch, C; Cava, M.P.; Brehmer, L.; Ashwell, G.J. J. Am. Chem. Soc. 1997, 119, 10455-10466. (d) Metzger, R.M. Ace. Chem. Res. 1999, 32, 950-957.

    Google Scholar 

  18. Ranu, B. C; Sarkar, D. C; Chakraborty, R. Synth. Comm. 1992, 22, 1095–1099.

    Article  CAS  Google Scholar 

  19. Corey, E.J.; Székely, I.; Shiner, C.S. Tetrahedron Lett. 1977, 3529–3533.

    Google Scholar 

  20. Kilic, E.; Tuzun, C. Org. Prep. Proced., Int. 1990, 22(4), 485.

    Article  CAS  Google Scholar 

  21. Wulfman, D.S.; Cooper, C.F. Synthesis 1978, 924–925.

    Google Scholar 

  22. Kaczmarek, L; Nowak, B.; Zukowski, J.; Borowicz, P.; Sepiol, J.; Grabowska, A. J. Mol. Struct. 1991, 248, 189–200.

    Article  CAS  Google Scholar 

  23. (a) Romero, F.M.; Ziessel, R. Tetrahedron Lett. 1995, 36, 6471–6474. (b) Benin, V.; Kaszynski, P.; Pink, M.; Young, V.G. Jr. J. Org. Chem. 2000, 65, 6388-6397.

    Article  CAS  Google Scholar 

  24. Littler, B.J.; Ciringh, Y.; Lindsay, J.S. J. Org. Chem. 1999, 64, 2864–2872.

    Article  PubMed  CAS  Google Scholar 

  25. For several background procedures that were used or modified for these studies, see: (a) Lee, C.H.; Lindsey, J.S. Tetrahedron 1994, 50, 11427–11439. (b) Wang, Q.M.; Bruce D.W. Synlett. 1995, 1267-1268. (c) Wagner, R.W.; Johnson, T.E.; Li, F.; Lindsey J.S. J. Org. Chem. 1995, 60, 5266-5273. (d) Nierengarten, J.F.; Schall. C; Nicoud, J.F. Angew. Chem. Int. Ed. Engl. 1998, 37, 1934-1936. (e) Alder, A.D.; Longo, F.R.; Finarelli, J.D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476. (f) Khoung, R.G.; Jaquinod, L.; Smith K.M. Chem. Comm. 1997, 1057-1058.

    Article  Google Scholar 

  26. Jagessar, R. C; Tour, J.M. Org. Lett. 2000, 2, 111–113.

    Article  PubMed  CAS  Google Scholar 

  27. Austin, W.B.; Bilow, N.; Kellegham, W.J.; Lau, K.S.Y. J. Org. Chem. 1981, 46, 2280–2286.

    Article  CAS  Google Scholar 

  28. Tour, J.M.; Jones, L, II; Pearson, D. L; Lamba, J.S.; Burgin, T.P.; Whitesides, G.W.; Allara, D.L.; Parikh, A.N.; Atre, S. J. Am. Chem. Soc. 1995, 117, 9529–9534.

    Article  CAS  Google Scholar 

  29. Tao, Y-T.; Hietpas, G.D.; Allara, D.L. J. Am. Chem. Soc. 1996, 118, 6724–6735.

    Article  CAS  Google Scholar 

  30. Xu, Z.F.; Moore, J.S. Angew. Chem., Int. Ed. Engl. 1993, 32, 1354–1356.

    Article  Google Scholar 

References, Section IV

  1. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, and P.S. Weiss, Science 271, 1705 (1996).

    Article  CAS  Google Scholar 

  2. M. Dorogi, J. Gomez, R. Osifchin, R.P. Andres, and R. Reifenberger, Room-temperature Coulomb blockade from a self-assembled molecular nanostructures, Phys. Rev. B52, 9071, 1995.

    Google Scholar 

  3. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997).

    Article  CAS  Google Scholar 

  4. J. Chen el al, Chem. Phys. Lett. 313, 741 (1999).

    Article  CAS  Google Scholar 

  5. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Urge on-off ratios and negative differential resistance in a molecular electronic device, Science 286, 1550–1552 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  7. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Phys. Rev. B 59, (1999) 12505.

    Article  CAS  Google Scholar 

  8. E. Tekman, S. Ciraci, Phys. Rev. B 40, 10286 (1989).

    Article  Google Scholar 

  9. S. Ciraci, A. Baratoff, I. P. Batra, Phys. Rev. B 41, 2763 (1990).

    Article  Google Scholar 

  10. H. Park, A.K.L. Lim, J. Park, A.P. Alivisatos, and P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999).

    Article  CAS  Google Scholar 

  11. DR. Lombardi, Design and self assembly of conjugated oligomers for electronic device applications, Ph. D. Thesis, Yale University, 1997.

    Google Scholar 

  12. A.Bezryadin, C. Dekker, and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).

    Article  CAS  Google Scholar 

  13. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. K.S. Rails, R.A. Buhrman and T.C. Tiberio, Fabrication of thin film metal nanobridges, Appl. Phys. Lett. 55, 2459, 1989.

    Article  Google Scholar 

References, Section V

  1. P.E. Laibinis, G.M. Whitesides, D.L. Allara, A. Parikh, Y.T. Tao, R.G. Nuzzo, J. Am. Chem. Soc. 113, 7152(1991).

    Article  CAS  Google Scholar 

  2. C.D. Bain, J. Evall, G.M. Whitesides, J. Am. Chem. Soc. 111, 7155(1989).

    Article  CAS  Google Scholar 

  3. J.I. Henderson, S. Feng, G.M. Ferrence, T. Bein, C.P. Kubiak, Inorg. Chim. Acta 242, 115 (1996).

    Article  CAS  Google Scholar 

  4. J.J. Hickman, C. Zou, D. Offer, P.D. Harvey, M.S. Wrighton, P.E. Laibinis, C.D. Bain, G.M. Whitesides, J. Am. Chem. Soc. 111, 7271 (1989).

    Article  CAS  Google Scholar 

  5. J.M. Tour, L. Jones II, D.L. Pearson, J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L. Allara, A.N. Parikh, S. Atre, J. Am. Chem. Soc. 117, 9529 (1995).

    Article  CAS  Google Scholar 

  6. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997).

    Article  CAS  Google Scholar 

  7. M. Di Ventra, S.T. Pantelides, N.D. Lang, “First principles calculation of transport properties of a molecular device”, Phys. Rev. Lett. 84, 979 (2000).

    Article  PubMed  Google Scholar 

  8. T. Vondrak, H. Wang, P. Winget. C.J. Cramer, X.-Y. Zhu, J. Amer. Chem. Soc. (in press).

    Google Scholar 

  9. J. Chen et al. Chem. Phys. Lett. 313, 741 (1999).

    Article  CAS  Google Scholar 

  10. C. Zhou, Ph.D. Thesis, Yale University, New Haven, CT, 1999.

    Google Scholar 

  11. S. Datta, W. Tian, S. Hong, R. Reifenberger, J. Henderson, C.P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997).

    Article  CAS  Google Scholar 

  12. E. Burstein, S. Lundqvist, Tunneling Phenomena in Solids, Plenum Press, New York 1969.

    Book  Google Scholar 

  13. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.

    Google Scholar 

  14. D.R. Lamb, Electrical Conduction Mechanisms in Thin Insulating Films, Methue, London, 1967.

    Google Scholar 

  15. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones II, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997).

    Article  CAS  Google Scholar 

  16. M.J. Robertson and R.J. Angelice, Langmuir 10, 1488 (1994).

    Article  CAS  Google Scholar 

  17. K. Shih and R.J. Angelici, Langmuir 11, 2539 (1995).

    Article  CAS  Google Scholar 

  18. J.E. Huheey, Inorganic Chemistry, Harper & Row Publishers, Inc., New York, 1983.

    Google Scholar 

  19. K.S. Rails, R.A. Buhrman, R.C. Tiberio, Appl. Phys. Lett. 55, 2459 (1989). Note that the process employed here was slightly modified (the bowl is inverted) over that employed in reference 15.

    Article  Google Scholar 

  20. N.W. Ashcroft, N.D. Mermin, “Solid State Physics”, p 290, Harcourt Brace College Publishers Orlando, Florida, 1976.

    Google Scholar 

  21. H. Jones, “Theory of Electrical and Thermal Conductivity in Metals”, in S. Flugge (Ed.), Handbuch der Physik, Vol. 19, p 227 Springer-Verlag, Berlin, 1956.

    Google Scholar 

  22. N.F. Mott, Proc. Roy. Soc. (London), Ser. A 153, 699 (1936).

    Article  CAS  Google Scholar 

  23. M.R. Deshpande el al., Phys. Rev. Lett. 76, 1328 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. G. Gladstone, M.A. Jensen, and J.R. Schrieffer, in Superconductivity, edited by R.D. Parks, Marcel Dekker, New York, p 734, 1969.

    Google Scholar 

  25. S. Roth, S. Blumentritt, M. Burghard, C.M. Fischer, C. Muller-Schwanneke, G. Philipp, “Langmuir-Blodgett Micro-Sandwiches”, K. Kajimura, S. Kuroda, (Eds.) Materials and Measurements in Molecular Electronics, Springer, 1996.

    Google Scholar 

  26. T.A. Skotheim, Eds., Handbook of Conducting Polymers, Marcel Dekker, Inc., New York, NY, 1986.

    Google Scholar 

References, Section VI.

  1. Potember, R.S., Pochler, T.O. & Cowan, D.O., Electrical switching and memory phenomena in Cu-TCNQ thin films, Appl. Phys. Lett., 34, 405407 (1979).

    Article  Google Scholar 

  2. Potember, R. S., Poehler, T.O., Cowan, D.O. & Bloch, A. N., Electrical S witching a nd Memory Phenomena in Semiconducting Organic Charge-transfer Complexes, The Physics and Chemistry of Low-Dimensional Solids, D. Rreidel Publishing Company, (L. Alcbcer, ed.) 419–428 (1980).

    Google Scholar 

  3. T. Hertel, R.E. Walkup, Ph. Avouris, Phys. Rev. B 58, 13870 (1993).

    Article  Google Scholar 

  4. C. Zhou, thesis, Yale University (1999).

    Google Scholar 

  5. L. Esaki, Phys. Rev. 109, 603 (1958).

    Article  CAS  Google Scholar 

  6. L.B. Gunn, “Microwave oscillation of current in III-V semiconductors”, Solid State Commun. 1, 88 (1963).

    Article  Google Scholar 

  7. L.L. Chang, L. Esaki and R. Tsu, Resonant Tunneling in semiconductor double barriers, Appl. Phys. Lett., 24, 593(1974).

    Article  CAS  Google Scholar 

  8. H. Kroemer, “Theory of the Gunn Effect”, Proc. IEEE 52, 1736 (1964).

    Article  Google Scholar 

  9. T.C.L.G. Sollneret al., Appl. Phys. Lett. 43, 588(1983).

    Article  CAS  Google Scholar 

  10. M. Tsuchiya, H. Sakaki, J. Yoshino, Jpn. J. Appl. Phys. 24, L466 (1985).

    Article  Google Scholar 

  11. S.M. Sze (Eds), High-Speed Semiconductor Devices, (Wiley, New York, 1990).

    Google Scholar 

  12. F. Capasso and R.A. Kiehl, “Resonant Tunneling transistor with quantum well base and high-energy injection: A new negative differential resistance device” J. Appl. Phys. 58 1366–1368 (1985).

    Article  CAS  Google Scholar 

  13. N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, and N. Nishi “ A new functional resonant tunneling hot electron transistor” Japan. J. Appl. Phys., Part2,24, L583–584 (1985).

    Article  Google Scholar 

  14. F. Capasso, “ New high speed quantum well and variable gap superlattice devices” in Picosecond Electronics and Optoelectronics, G.A. Mourou, D.M. Bloom, and C.H. Lee, Eds. Berlin: Springer, 1985 pi 12–130.

    Google Scholar 

  15. L. Esaki, Esaki Tunnel Diode Task Group, IEEE Trans. Electron Dev. 12, 374–386(1965).

    Google Scholar 

  16. A. Seabaugh and R. Lake, Tunnel Diodes, Encyl. Appl. Phys. 22, 335 (1998).

    Google Scholar 

  17. H. Mizuta, and T. Tanoue, The Physics and Applications of Resonant Tunneling Diodes, Cambridge, (1995).

    Google Scholar 

  18. K.H. Gundlach, J. Kadlec, Negative Resistance in Organic Monomolecular Layers Sandwiched between Metal Electrodes, Phys. Stat. Sol. (a) 10, 371 (1972).

    Article  CAS  Google Scholar 

  19. C. Hamann et al. Phys. Stat. Sol. (a) 50, K189 (1978).

    Article  CAS  Google Scholar 

  20. A.R. Elsharkawi and K.C. Kao, J. Phys. Chem. Solids 38, 95 (1977).

    Article  CAS  Google Scholar 

  21. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Large on-off ratios and negative differential resistance in a molecular electronic device, Science, 286, 1550–1552 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. The starting compound (la) was prepared by sequential Pd/Cu-catalyzed coupling of 2,5-dibromo-4-nitroacetanilide with phenylacetylene and 4-ethynyl(thioacetyl)benzene.

    Google Scholar 

  23. J.M. Tour et al., J. Am. Chem. Soc. 117, 9529(1995).

    Article  CAS  Google Scholar 

  24. Weak room temperature NDR has been previously reported; M.A. Reed, Proc. IEEE 87, 652 (1999).

    Article  CAS  Google Scholar 

  25. M. Di Ventra, S.T. Pantelides, N.D. Lang, “First principles calculation of transport properties of a molecular device”, Phys. Rev. Lett. 84, 979 (2000).

    Article  PubMed  Google Scholar 

  26. J.H. Smet, T.P.E. Broekaert, and C. G, Fonstad, J. Appl. Phys. 71, 2475(1992)

    Article  CAS  Google Scholar 

  27. J.R. Söderström, D.H. Chow, and T.C. McGill, J. Appl. Phys. 66, 5106 (1989)

    Article  Google Scholar 

  28. J. Day etal., J. Appl. Phys. 73, 1542(1993).

    Article  CAS  Google Scholar 

  29. H.H. Tsai et al., IEEE Elec. Dec. Lett. 15, 357 (1993).

    Article  Google Scholar 

  30. J. McMurry, Organic Chemistry, Brooks/Cole Publishing Company, plO8(1996).

    Google Scholar 

  31. Private communication with A.G. Zacarias.

    Google Scholar 

  32. H.J. Gao et al, Phys. Rev. Lett. 84, 1780 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. J.M. Seminario and P. Politzer, Ganssian-2 and Density Functional Studies of H 2 N-NO 2 Dissociation, Inversion and Isomerization, Int. J. Quantum Chem. S26, 497–504 (1992).

    Article  Google Scholar 

  34. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbe, E.F., Chan, K., A silicon nanocrystals based memory, Appl. Phys. Lett. 68, 1377–1379(1996).

    Article  CAS  Google Scholar 

  35. A single electron memory operating at 4 K was demonstrated in Stome, N. J, Ahmed, H., A high-speed silicon single-electron random access memory, Elec. Dev. Lett. 20, 583–585 (1999).

    Article  Google Scholar 

  36. M.A. Reed et al. Science 278, 252 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, J. et al. (2003). Molecular Electronic Devices. In: Barsanti, L., Evangelista, V., Gualtieri, P., Passarelli, V., Vestri, S. (eds) Molecular Electronics: Bio-sensors and Bio-computers. NATO Science Series, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0141-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0141-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1212-9

  • Online ISBN: 978-94-010-0141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics