Skip to main content

What can Tell Topological Approaches on the Bonding in Transition Metal Compounds

  • Conference paper
Metal-Ligand Interactions

Part of the book series: NATO Science Series ((NAII,volume 116))

Abstract

The bonding in molecules containing transition metal atoms is generally described and explained by model based on orbitals. Alternatively, topological approaches such as the Atoms in Molecules (AIM) theory or the Electron Localization function (ELF) analysis offer an orbital independent framework enabling the partition of the molecular position space into basins of attractors bearing a chemical signification. It is then possible to recover familiar chemical objects such as atoms, bonds and lone pairs. We present an overview of the possibility offered by the ELF analysis to investigate the bonding in the transition metal compounds ranging from isolated atoms to solids. The M-shell population of the ground state atoms is always less than the expectation (Z-12 or Z-11) whereas that of the N-shell is greater than 2 or 1 in the case of Cr and Cu. The bonding in the TM di and tri-halides has been investigated and it shown that the populations in the MF3 series (M=Sc, …, Zn) can be rationalized by invoking the contribution of resonance structures in which the fluorine atom forms a dative bond with the metal and therefore does not fulfil the octet rule. The bonding in carbonyl complexes is mostly characterized by the population and the spin density population of the V(C, M) basin which accepts most of the net density transfers from the metal whereas the sum of the populations of the remaining carbonyl moiety remains almost equal to that calculated in free carbon monoxide. In bimetallic complexes, such as M2(HNCHNH)4 (M=Nb, …, Pd) our analysis shows that there is a huge derealization between the two metallic subunit which is revealed by the value of the variance of the corresponding populations. This derealization appears to be a direct consequence of the symmetry and of diamagnetism of these molecules. In all these examples, the localization of the spin density is a clue to interpret the bonding. Examples of multicenter bonds favoured by the size of the transition metallic cores are presented which shed light onto the nature of agostic hydrogen interaction as well as on planar tetracoordinated carbons and of bulk metals. Results concerning chemisorption on a catalyst surface and the bonding in bulk metal oxides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Ballhausen, Introduction to Ligand Field Theorys (Mc Graw Hill, New York, 1962).

    Google Scholar 

  2. C. K. Jørgensen, Modern Aspects of Ligand Field Theorys (Elsevier, New York, 1971).

    Google Scholar 

  3. M. J. S. Dewar, in Bull. Soc. Chim. 18, c79 (1951).

    Google Scholar 

  4. J. Chatt and L. A. Duncanson, in J. Chem. Soc. p. 2939 (1953).

    Google Scholar 

  5. F. A. Cotton and D. G. Nocera, in Acc. Chem. Res. 39, 483 (2000).

    Article  CAS  Google Scholar 

  6. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1948).

    Google Scholar 

  7. R. J. Gillespie and P. L. A. Popelier, Chemical Bonding and Molecular Geometry (Oxford University Press, Oxford, 2001).

    Google Scholar 

  8. C. Adamo and F. Lelj, in J. Chem. Phys. 103, 10605 (1995).

    Article  CAS  Google Scholar 

  9. S. Dapprich and G. Frenking, in J. Phys. Chem. 99, 9352 (1995).

    Article  CAS  Google Scholar 

  10. F. A. Cotton, N. F. Curtis, B. F. G. Johnson and W. R. Robinson, in Inorg. Chem. 4, 326 (1965).

    Article  CAS  Google Scholar 

  11. F. A. Cotton and C. B. Harris, in Inorg. Chem. 4, 330 (1965).

    Article  CAS  Google Scholar 

  12. F. A. Cotton, in Inorg. Chem. 4, 334 (1965).

    Article  CAS  Google Scholar 

  13. C. A. Coulson, Valence (Clarendon, Oxford, 1952).

    Google Scholar 

  14. G. Frenking and N. Fröhlich, in Chem. Rev. 100, 717 (2000).

    Article  CAS  Google Scholar 

  15. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  16. B. Silvi and A. Savin, in Nature 371, 683 (1994).

    Article  CAS  Google Scholar 

  17. U. Häussermann, S. Wengert and R. Nesper, in Angew. Chem. Int. Ed. Engl. 33, 2073 (1994).

    Article  Google Scholar 

  18. C. Aslangul, R. Constanciel, R. Daudel and P. Kottis, in Advances in Quantum Chemistry, edited by P.-O. Löwdin, vol. 6, pp. 93–141 (Academic Press, New York, 1972).

    Google Scholar 

  19. R. Thorn, Stabilité Structurelle et Morphogénèse (Intereditions, Paris, 1972).

    Google Scholar 

  20. R. H. Abraham and C. D. Shaw, Dynamics: The Geometry of Behavior (Addison Wesley, 1992).

    Google Scholar 

  21. R. H. Abraham and J. E. Marsden, Foundations of Mechanics (Addison Wesley, 1994).

    Google Scholar 

  22. P. Hohenberg and W. Kohn, in Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  23. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig and Vienna, 1937).

    Google Scholar 

  24. R. P. Feynman, in Phys. Rev. 56, 340 (1939).

    Article  CAS  Google Scholar 

  25. R. G. Parr and R. G. Pearson, in J. Am. Chem. Soc. 105, 7512 (1983).

    Article  CAS  Google Scholar 

  26. W. Yang and R. G. Parr, in Proc. Natl. Acad. Sci. U.S.A. 82, 6723 (1985).

    Article  CAS  Google Scholar 

  27. R.G. Parr and W. Yang, in J. Am. Chem. Soc. 106, 4049 (1984).

    Article  CAS  Google Scholar 

  28. P. W. Ayers and M. Levy, in Theor. Chem. Ace. 103, 353 (2000).

    Article  CAS  Google Scholar 

  29. K. Fukui, T. Yonezawa and H. Shinghu, in J. Chem. Phys. 20, 722 (1972).

    Article  Google Scholar 

  30. M. Berkowitz, S. K. Ghosh and R. G. Parr, in J. Am. Chem. Soc. 107, 6811 (1985).

    Article  CAS  Google Scholar 

  31. R. Mac Weeny, Methods of Molecular Quantum Mechanics, second ed. (Academic Press, London, 1989).

    Google Scholar 

  32. A. D. Becke and K. E. Edgecombe, in J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

  33. R. F. W. Bader, in Localization and Derealization in quantum Chemistry, edited by O. Chalvet, R. Daudel, S. Diner and J. P. Malrieu, vol. I, pp. 15–38 (Reidel, Dordrecht, 1975).

    Chapter  Google Scholar 

  34. R. F. W. Bader, S. G. Anderson and A. J. Duke, in J. Am. Chem. Soc. 101, 1389 (1979).

    Article  CAS  Google Scholar 

  35. R. F. W. Bader and T. T. Nguyen-Dang, in Advances in Quantum Chemistry, vol. 14, pp. 63–124 (Academic Press, New York, 1981).

    Google Scholar 

  36. W. L. Cao, C. Gatti, P. J. MacDougall and R. F. W. Bader, in Chem. Phys. Lett. 141, 380 (1987).

    Article  CAS  Google Scholar 

  37. A. Martin Pendás, M. A. Blanco, A. C. P. Mori Sánchez and V. Luaña, in Phys. Rev. Lett. 83, 1930 (1999).

    Article  Google Scholar 

  38. L. Cohen, in J. Chem. Phys. 70, 788 (1979).

    Article  CAS  Google Scholar 

  39. R. F. W. Bader, in J. Phys. Chem. A 102, 7314 (1998).

    Article  CAS  Google Scholar 

  40. R. J. Gillespie and R. S. Nyholm, in Quart. Rev. Chem. Soc. 11, 339 (1957).

    Article  CAS  Google Scholar 

  41. R. J. Gillespie, Molecular Geometry (Van Nostrand Reinhold, London, 1972).

    Google Scholar 

  42. R. J. Gillespie and E. A. Robinson, in Angew. Chem. Int. Ed. Engl. 35, 495 (1996).

    Article  CAS  Google Scholar 

  43. A. Savin, B. Silvi and F. Colonna, in Can. J. Chem. 74, 1088 (1996).

    Article  CAS  Google Scholar 

  44. B. Silvi, A. Savin and F. R. Wagner, in Modelling of Minerals and Silicated Materials, edited by B. Silvi and P. D’Arco, vol. 15, topics in molecular organization and engineering ed., pp. 179–199 (Kluwer Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  45. S. Noury, F. Colonna, A. Savin and B. Silvi, in J. Mol. Struct. 450, 59 (1998).

    Article  CAS  Google Scholar 

  46. R. Llusar, A. Beltrán, J. Andrés, S. Noury and B. Silvi, in J. Comput. Chem. 20, 1517 (1999).

    Article  CAS  Google Scholar 

  47. A. Beiträn, J. Andrés, S. Noury and B. Silvi, in J. Phys. Chem. A 103, 3078 (1999).

    Article  Google Scholar 

  48. F. Fuster and B. Silvi, in Theoret. Chem. Ace. 104, 13 (2000).

    Article  CAS  Google Scholar 

  49. B. Silvi and C. Gatti, in J. Phys. Chem. A 104, 947 (2000).

    Article  CAS  Google Scholar 

  50. R. Choukroun, B. Donnadieu, J.-S. Zhao, P. Cassoux, C. Lepetit and B. Silvi, in Organometallics 19, 1901 (2000).

    Article  CAS  Google Scholar 

  51. D. B. Chesnut and L. J. Bartolotti, in Chem. Phys. 253, 1 (2000).

    Article  CAS  Google Scholar 

  52. D. B. Chesnut and L. J. Bartolotti, in Chem. Phys. 257, 171 (2000).

    Article  Google Scholar 

  53. D. B. Chesnut, in J. Phys. Chem. A 104, 7635 (2000).

    Article  CAS  Google Scholar 

  54. C. Fressigné, J. Maddaluno, A. Marquez and C. Giessner-Prettre, in J. Org. Chem. 65, 8899 (2001).

    Article  CAS  Google Scholar 

  55. F. Fuster, A. Sevin and B. Silvi, in J. Phys. Chem. A 104, 852 (2000).

    Article  CAS  Google Scholar 

  56. F. Fuster and B. Silvi, in Chem. Phys. 252, 279 (2000).

    Article  CAS  Google Scholar 

  57. F. Fuster, A. Sevin and B. Silvi, in J. Comput. Chem. 21, 509 (2000).

    Article  CAS  Google Scholar 

  58. X. Krokidis, S. Noury and B. Silvi, in J. Phys. Chem. A 101, 7277 (1997).

    Article  CAS  Google Scholar 

  59. X. Krokidis, V. Goncalves, A. Savin and B. Silvi, in J. Phys. Chem. A 102, 5065 (1998).

    Article  CAS  Google Scholar 

  60. X. Krokidis, B. Silvi and M. E. Alikhani, in Chem. Phys. Lett. 292, 35 (1998).

    Article  CAS  Google Scholar 

  61. X. Krokidis, R. Vuilleumier, D. Borgis and B. Silvi, in Molec. Phys. 96, 265 (1999).

    CAS  Google Scholar 

  62. X. Krokidis, N. W. Moriarty, W. A. Lester, Jr. and M. Frenklach, in Chem. Phys. Lett. 314, 534 (1999).

    Article  CAS  Google Scholar 

  63. P. G. Mezey, in Can. J. Chem. 72, 928 (1993).

    Article  Google Scholar 

  64. D. L. Cooper, (2000), personal beer communication.

    Google Scholar 

  65. X. Fradera, M. A. Austen and R. F. W. Bader, in J. Phys. Chem. A 103, 304 (1998).

    Article  Google Scholar 

  66. J. Cioslowski and S. T. Mixon, in J. Am. Chem. Soc. 113, 4142 (1991).

    Article  CAS  Google Scholar 

  67. J. G. Ángyán, M. Loos and I. Mayer, in J. Phys. Chem. 98, 5244 (1994).

    Article  Google Scholar 

  68. R. Daudel, R. F. W. Bader, M. E. Stephens and D. S. Borrett, in Can. J. Chem. 52, 1310 (1974).

    Article  CAS  Google Scholar 

  69. R. F. W. Bader and M. E. Stephens, in Chem. Phys. Lett. 26, 445 (1974).

    Article  CAS  Google Scholar 

  70. R. F. W. Bader and M. E. Stephens, in J. Am. Chem. Soc. 97, 7391 (1975).

    Article  CAS  Google Scholar 

  71. M. Kohout and A. Savin, in Int. J. Quant. Chem. 60, 875 (1996).

    Article  CAS  Google Scholar 

  72. M. Kohout, F. R. Wagner and Y. Grin, in Theor. Chem. Ace. 108, 150 (2002).

    Article  CAS  Google Scholar 

  73. S. Y. Shashkin and W. A. Goddard III, in J. Phys. Chem. 90, 255 (1986).

    Article  CAS  Google Scholar 

  74. D. S. Salahub, in Adv. Chem. Phys. 69, 447 (1987).

    Article  CAS  Google Scholar 

  75. C. W. Bauschlicher and B. O. Roosb, in J. Chem. Phys. 91, 4785 (1989).

    Article  CAS  Google Scholar 

  76. F. Rogemond, H. Chermette and D. R. Salahub, in Chem. Phys. Lett. 219, 228 (1994).

    Article  CAS  Google Scholar 

  77. B. O. Roos, K. Andersson, M. P. Fulscher, P.-A. Malmqvist, L. Serrano-Andrés, K. Pierloot and M. Merchan, in Adv. Chem. Phys. 93, 219 (1996).

    Article  CAS  Google Scholar 

  78. P. E. M. Siegbahnn, in Adv. Chem. Phys. 93, 333 (1996).

    Article  Google Scholar 

  79. S. G. Wang and W. Schwartz, in J. Chem. Phys. 109, 7252 (1998).

    Article  CAS  Google Scholar 

  80. R. Bianchi, G. Gervasio and D. Marabello, in Inorg. Chem. 39, 2360 (2000).

    Article  CAS  Google Scholar 

  81. J. Pilme, B. Silvi and M. E. Alikhani, in J. Phys. Chem. A (2002).

    Google Scholar 

  82. L. A. Barnes, M. Rosi and C. W. Bauschlicher, Jr., in J. Chem. Phys. 94, 2031 (1991).

    Article  CAS  Google Scholar 

  83. M. R. A. Blomberg, P. E. M. Siegbahn, T. J. Lee, A. P. Rendell and J. E. Rice, in J. Chem. Phys. 95, 5898 (1991).

    Article  CAS  Google Scholar 

  84. A. D. Becke, in J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  85. A. D. Becke, in Phys. Rev. A38, 3098 (1988).

    Google Scholar 

  86. C. Lee, Y. Yang and R. G. Parr, in Phys. Rev. B37, 785 (1988).

    Google Scholar 

  87. B. Miechlich, A. Savin, H. Stoll and H. Preuss, in Chem. Phys. Lett. 157, 200 (1989).

    Article  Google Scholar 

  88. A. J. H. Wächters, in J. Chem. Phys. 52, 1033 (1970).

    Article  Google Scholar 

  89. P. J. Hay, in J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  90. K. J. Raghavachari and G. W. Trucks, in J. Chem. Phys. 91, 1062 (1989).

    Article  Google Scholar 

  91. F. A. Cotton and X. Feng, in J. Am. Chem. Soc. 119, 7514 (1997).

    Article  CAS  Google Scholar 

  92. F. A. Cotton and X. Feng, in J. Am. Chem. Soc. 120, 3387 (1998).

    Article  CAS  Google Scholar 

  93. I. Demachy, A. Lledos and Y. Jean, in Inorg. Chem. 38, 5443 (1999).

    Article  CAS  Google Scholar 

  94. R. Llusar, A. Beltrán, J. Andrés, F. Fuster and B. Silvi, in J. Phys. Chem. A 105, 9460 (2001).

    Article  CAS  Google Scholar 

  95. D. Cremer and E. Kraka, in Croat. Chem. Acta 57, 1259 (1983).

    Google Scholar 

  96. D. Cremer and E. Kraka, in Angew. Chem. Int. Ed. Engl. 23, 627 (1984).

    Article  Google Scholar 

  97. G. Jansen, M. Schubart, B. Findeis, L. H. Gade, I. J. Scowen and M. McPartlin, in J. Am. Chem. Soc. 120, 7239 (1998).

    Article  CAS  Google Scholar 

  98. M. Feliz, R. Llusar, J. Andrés, S. Berski and B. Silvi, in New J. Chem. 26, 844 (2002).

    Article  CAS  Google Scholar 

  99. J. Li, C.-W. Liu and J.-X. Lu, in Polyhedron 13, 1841 (1994).

    Article  CAS  Google Scholar 

  100. B. Silvi, in J. Mol. Struct, pp. 1659–1675 (2002).

    Google Scholar 

  101. R. Choukroun, B. Donnadieu, J.-S. Zhao, P. Cassoux, C. Lepetit and B. Silvi, in Organometallics 19, 1901 (2000).

    Article  CAS  Google Scholar 

  102. M. Brookhart, M. Green and L. L. Wong, in Prog. Inorg. Chem. 36, 1 (1999).

    Article  Google Scholar 

  103. H. Gérard, E. Clot, C. Giessner-Prettre, K. G. Caulton, E. R. Davidson and O. Eisenstein, in Organometallics 19, 2291 (2000).

    Article  CAS  Google Scholar 

  104. R. Hoffman, R. Alder and C. F. Wilcox, Jr., in J. Am. Chem. Soc. 92, 4992 (1970).

    Article  Google Scholar 

  105. G. Erker, R. Zwettler, C. Krüger, R. Noe and S. Werner, in J. Am. Chem. Soc. 112, 9620 (1990).

    Article  CAS  Google Scholar 

  106. G. Blyholder, in J. Phys. Chem. 68, 2772 (1964).

    Article  CAS  Google Scholar 

  107. P. S. Bagus, C. J. Nelin and C. W. Bauschlicher Jr., in Phys. Rev. B 28, 5423 (1983).

    Article  CAS  Google Scholar 

  108. P. S. Bagus and G. Pacchioni, in Surf. Sci. 278, 427 (1992).

    Article  CAS  Google Scholar 

  109. R. Hoffmann, in Rev. Mod. Phys. 60, 601 (1988).

    Article  CAS  Google Scholar 

  110. G. Pacchioni, S.-C. Chung, S. Krüger and N. Rösch, in Surf. Sci. 392, 173 (1997).

    Article  CAS  Google Scholar 

  111. Y.-T. Wong and R. Hoffmann, in J. Phys. Chem. 94, 859 (1991).

    Article  Google Scholar 

  112. M. Garcia-Hernandez, A. Beste, G. Frenking and F. Illas, in Chem. Phys. Lett. 320, 222 (2000).

    Article  CAS  Google Scholar 

  113. B. Hammer, Y. Morikawa and J. K. Norskov, in Phys. Rev. Lett. 76 (1996).

    Google Scholar 

  114. P. Hu, D. King, M.-H. Lee and M. Payne, in Chem. Phys. Lett. 246 (1995).

    Google Scholar 

  115. H. Aizawa and S. Tsuneyuki, in Surf. Sci. 399 (1998).

    Google Scholar 

  116. S. Ohnishi and N. Watari, in Phys. Rev. B 49 (1998).

    Google Scholar 

  117. F. Illas, S. Zurita, A. M. Marquez and J. Rubio, in Surf. Sci. 376 (1997).

    Google Scholar 

  118. D. Curulla, A. Clotet, J. M. Ricart and F. Illas, in J. Phys. Chem. B 103 (1999).

    Google Scholar 

  119. P. S. Bagus and F. Illas, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaeffer III and P. R. Schreiner, vol. 4 (Wiley, Chichester, 1998).

    Google Scholar 

  120. S.-C. Chung, S. Krüger, S. P. Ruzankin, G. Pacchioni and N. Rösch, in Chem. Phys. Lett. 248 (1996).

    Google Scholar 

  121. M. T. M. Koper, R. A. van Santen, S. A. Wasileski and M. J. Weaver, in J. Chem. Phys. 113 (2000).

    Google Scholar 

  122. K. A. Bunding Lee, K. Kunimatsu, J. G. Gordon, W. G. Golden and H. Seki, in J. Electrochim. Soc. 134 (1987).

    Google Scholar 

  123. W. Daum, F. Dederich and J. E. Müller, in Phys. Rev. Lett. 80 (1998).

    Google Scholar 

  124. W. Daum, F. Dederich and J. E. Müller, in Phys. Rev. Lett. 85 (2000).

    Google Scholar 

  125. A. Tadjeddine, A. Peremans, A. L. Rille, W. Q. Zheng, M. Tadjeddine and J.-P. Flament, in J. Chem. Soc. Faraday Trans. 92 (1996).

    Google Scholar 

  126. F. Huerta, E. Moralion, J. L. Vazquez and A. Aldaz, in Surf. Sci. 396 (1998).

    Google Scholar 

  127. M. Lennartz, M. Arenz, C. Stuhlmann and K. Wandelt, in Surf. Sci. 461 (2000).

    Google Scholar 

  128. C. Matranga and P. Guyot-Sionnest, in J. Chem. Phys. 112 (2000).

    Google Scholar 

  129. F. Ample, D. Curulla, F. Fuster, A. Clotet and J. M. Ricart, in Surf. Sci. 497, 139 (2002).

    Article  CAS  Google Scholar 

  130. R. Enjalbert and J. Galy, in Acta Cryst. C42, 1467 (1986).

    CAS  Google Scholar 

  131. L. Abello, E. Husson, Y. Repelin and G. Lucazeau, in Spectrochim. Acta 39A, 497 (1983).

    Google Scholar 

  132. P. Clauws, J. Broeckx and J. Vennik, in Phys. Stat. Sol. (b) 131, 459 (1985).

    Article  CAS  Google Scholar 

  133. J. Farcy, R. Messina and J. Perichon, in J. Electrochem. Soc. 137, 1337 (1990).

    Article  CAS  Google Scholar 

  134. J.Y. Kempf, B. Silvi, A. Dietrich, C. R. A. Catlow and B. Maigret, in Chemistry of Materials, 5, 641 (1993).

    Article  CAS  Google Scholar 

  135. B. Silvi, A. Savin, J. Kempf and H. von Schnering, in Bulletin of the Polish Academy of Sciences 42, 413 (1994).

    CAS  Google Scholar 

  136. V. A. Rassolov, J. A. Pople, M. A. Ratner and T. L. Windus, in J. Chem. Phys. 109, 1223 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Silvi, B., Pilme, J., Fuster, F., Alikhani, M.E. (2003). What can Tell Topological Approaches on the Bonding in Transition Metal Compounds. In: Russo, N., Salahub, D.R., Witko, M. (eds) Metal-Ligand Interactions. NATO Science Series, vol 116. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0191-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0191-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1495-6

  • Online ISBN: 978-94-010-0191-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics