Skip to main content

Design of Nonlinear Control of Nonlinear Multibody Systems

  • Chapter
Virtual Nonlinear Multibody Systems

Part of the book series: NATO ASI Series ((NAII,volume 103))

Abstract

Multibody systems are the most usual models of mechatronic systems. Mechatronic systems use the synergy achieved by the combination of properties of mechanical (hardware) systems and control (software) systems applied by electronic devices. Therefore the control of multibody systems is very important topic for mechatronic design. Multibody systems have several crucial problems compared with general controlled systems. They make their control to be a challenge in many cases. Its general origin is the usual nonlinearity of multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stejskal, V., Valasek, M. (1996)Kinematics and Dynamics of MachineryMarcel Dekker, New York

    Google Scholar 

  2. Isidori, A. (1989)Nonlinear Control SystemsSpringer-Verlag, Berlin.

    MATH  Google Scholar 

  3. Slotine, J.J., Li, W. (1991)Applied Nonlinear ControlPrentice Hall, New Jersey

    MATH  Google Scholar 

  4. Fliess, M. (ed.) (1992)Nonlinear Control System DesignPergamon Press.

    Google Scholar 

  5. Khalil, H.K. (1996)Nonlinear SystemsPrentice Hall, New Jersey.

    Google Scholar 

  6. Fliess, M. et al. (1995) Flatness and Dynamic Feedback Linearizability: Two Approaches, In:Proc. of 3 European Control ConferenceRome, pp. 649–654.

    Google Scholar 

  7. Delaleau, E., Rudolph, J. (1998) Control of Flat Systems by Quasi-static Feedback of Generalized StatesInt. J. of Control71 (1998), 5, pp. 745–765.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rudolph, J., Delaleau, E. (1998)Some Examples and Remarks on Quasi-Static Feedback of Generalized StatesAutomatica 34 (1998), 8, pp. 993–999.

    Article  MathSciNet  MATH  Google Scholar 

  9. Woernle, Ch. (2002)Control of Robotic Systems by Exact Linearization MethodsIn: P. Maisser, P. Tenberge (eds.), Advanced Driving Systems, Chemnitz

    Google Scholar 

  10. Valasek, M. (1986) Synthesis of Optimal Trajectory of Industrial Robots, Kybernetika 22 (1986), pp. 409–424

    Google Scholar 

  11. Bastl, P. (2002) Optimal Control of Multibody Systems Described by Redundant Coordinates, PhD Thesis, Czech Technical University in Prague.

    Google Scholar 

  12. Joos, H.D. (1992) Informationstechnische Behandlung des mehrzieligen optimierungsgestutzten regelungstechnischen Entwurfs, PhD Thesis, Univ. of Stuttgart.

    Google Scholar 

  13. Valasek, M. et al. (1998) Development of Semi-Active Road-Friendly Truck SuspensionsControl Engineering Practice6(1998), pp. 735–744

    Article  Google Scholar 

  14. Banks, S.P., Mhana, K.J. (1992) Optimal control and stabilization for nonlinear systemsSIAM Journal of Mathematical Control and Information9(1992), pp. 179–196

    Article  MathSciNet  MATH  Google Scholar 

  15. Cloutier, J.R. (1997) State-Dependent Riccati Equation Techniques: An OverviewProc. of 1997 American Control Conference, Albuquerque1997, pp. 932–936

    Google Scholar 

  16. Langson, W., Alleyne, A. (1997) Inifinte horizon optimal control of a class of nonlinear systemsProc. of the IEEE American Control Conference1997, pp. 3017–3022

    Google Scholar 

  17. Valasek, M., Steinbauer, P. (1999) Nonlinear Control of Multibody Systems, In: Ambrosio, J., Schiehlen, W. (eds.):Proc. of Euromech Colloquium 404 Advances in Computational Multibody DynamicsLisabon, pp. 437–444

    Google Scholar 

  18. Cloutier, J. R. et al. (1999) On the recoverability of nonlinear state feedback laws by extended linearization control techniquesProc. of the 1999 American Control Conference, San Diegopp. 1515–1519.

    Google Scholar 

  19. Erdem, E.B., Alleyne, A. (1999) Globally stabilizing second order nonlinear systems by SDRE controlProc. of the 1999 American Control Conference, San Diegopp. 2501–2505.

    Google Scholar 

  20. Valasek, M., Kejval, J. (2000) New Direct Synthesis of Nonlinear Optimal Control of Semi-Active Suspensions, In:Proc. of Advanced Vehicle Control AVEC 2000, Ann Arborpp. 691–697.

    Google Scholar 

  21. .Roubicek, T., Valasek, M. (in print) Optimal Controil of Causal Differential-Algebaric SystemsJMAA

    Google Scholar 

  22. Valasek, M. (1993) Control of Elastic Industrial Robots by Nonlinear Dynamic CompensationActa Polytechnica33, 1, (1993), pp. 15–30.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Valášek, M. (2003). Design of Nonlinear Control of Nonlinear Multibody Systems. In: Schiehlen, W., Valášek, M. (eds) Virtual Nonlinear Multibody Systems. NATO ASI Series, vol 103. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0203-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0203-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1340-9

  • Online ISBN: 978-94-010-0203-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics