Skip to main content

Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry

  • Chapter
Laser Scanning: Update 1
  • 184 Accesses

Abstract

A new model of the reflection of the human ocular fundus on the basis of the adding-doubling method, an approximate solution of the radiative transport equation, is described. This model enables the calculation of the concentration of xanthophyll in the retina, of melanin in the retinal pigment epithelium and in the choroid, and of hemoglobin in the choroid from fundus reflectance spectra. The concentration values found in 12 healthy subjects are in excellent agreement with literature data. In single cases of pathologic fundus alterations possible benefits to the ophthalmologic diagnostics is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Norren D, Tiemeijer LF. Spectral reflectance of the human eye. Vision Res 1986; 26: 313–320.

    Article  PubMed  Google Scholar 

  2. Delori FC, Pflibsen KP. Spectral reflectance of the human ocular fundus. Appl Opt 1989; 28: 1061–1077.

    Article  PubMed  CAS  Google Scholar 

  3. Schweitzer D, Königsdörffer E, Tröger G, Augsten R, Klein S, Roth H. Möglichkeiten und Grenzen der Fundusreflektometrie zum Nachweis von Veränderungen in einzelnen Schichten des Augenhintergrundes. Folia Ophthalmol 1990; 15: 125–137.

    Google Scholar 

  4. Kubelka P, Munk F. Ein Beitrag zur Optik der Farbanstriche. Zeitschr f techn Optik 1931; 11: 593–611.

    Google Scholar 

  5. Hammer M, Schweitzer D, Leistritz L, Scibor M, Donnerhacke KH, Strobel J. Imaging Spectroscopy of the human ocular fundus in vivo. J Biomed Opt 1997; 2: 418–425.

    Article  PubMed  Google Scholar 

  6. Hammer M, Roggan A, Schweitzer D, Muller G. Optical properties of ocular fundus tissues — an in vitro study using the double-integrating-spere technique and inverse Monte Carlo Simulation. Phys Med Biol 1995; 40: 963–978.

    Article  PubMed  CAS  Google Scholar 

  7. Ishimaru A. Wave propagation and scattering in random media. Academic Press New York, San Francisco, London.

    Google Scholar 

  8. Wang L-H, Jacques SL. Monte Carlo modelling of light transport in multi-layered tissues in standard C. The University of Texas, M.D. Anderson Cancer Center, Houston.

    Google Scholar 

  9. Star WM, Marijnissen JPA, van Gemert MJC. Light dosimetry in optical phantoms and tissue: L Multiple flux and transport theory. Phys Med Biol 33 437–454.

    Google Scholar 

  10. van de Huist HC. A New Look on Multiple Scattering. Unnumbered mimeographed report, NASA Institute for Space Science, New York, 1963.

    Google Scholar 

  11. van de Huist HC. Multiple light scattering. Vol 1; Academic, New York, 1980.

    Google Scholar 

  12. Prahl SA. Light Transport in Tissue, PhD thesis at the University of Texas at Austin, 1988.

    Google Scholar 

  13. Prahl SA. The adding-doubling method. In: Welch AJ and van Gemert MJC (eds), Optical-Thermal Response of Laser-Irradiated Tissue., Plenum Press, New York, 1995.

    Google Scholar 

  14. Plass GN, Kattawar GW, Catchings FE. Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Appl Opt 1973; 12: 314–329.

    Article  PubMed  CAS  Google Scholar 

  15. Hildebrand FB. Introduction to Numerical Analysis. Dover, New York, 1974.

    Google Scholar 

  16. Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J 1941; 93: 70–83.

    Article  Google Scholar 

  17. Wiscombe WJ. On initialization, error, and flux conservation in the doubling method. J Quant Spectrosc Radiat Transfer 1976; 16: 637–658.

    Article  Google Scholar 

  18. Rohen JW. Anatomie und Embryologie. In: Francois J, Holiwich I (eds) Augenheilkunde in Klinik und Praxis, Thieme, Stuttgart, 1977.

    Google Scholar 

  19. Naumann GOH. Pathologie des Auges. Vol. 1, Berlin, Heidelberg, New York, 1997.

    Book  Google Scholar 

  20. van Assendelft OW. Spectrophotometry of heamoglobin derivatives. Roal Vangorcum, Assen, 1970.

    Google Scholar 

  21. Gabel V-P, Birngruber R, Hillenkamp F. Visible and near infrared light absorption in pigment epithelium and choroid. In: Shimizu K, Osterhuis JA (eds) Proc. XXIII consilium ophthal-mologicum, Kyoto, ( Amsterdam Oxford: Excerpta Medica ), pp. 658–662, 1978.

    Google Scholar 

  22. Wyszecki G, Stiles WS. Colour science. Wiley & Sons, New York, 1967.

    Google Scholar 

  23. van Notren D, Vos JJ. Spectral transmission of the human ocular media. Vision Res 1974; 14: 1237–1244.

    Article  Google Scholar 

  24. Pokorny I, Smith VC, Lutze M. Aging of the human lens. Appl Opt 1987; 26: 1437–1440.

    Article  PubMed  CAS  Google Scholar 

  25. Brent RP. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, 1973.

    Google Scholar 

  26. Hammer M, Schweitzer D, Thamm E, Koib E. Optical properties of ocular fundus tissues determined by optical coherence tomography. Submitted to Op. Comm. 2000.

    Google Scholar 

  27. Hammer M, Schweitzer D, Leistritz L, Scibor M, Donnerhacke KH, Strobel J. Imaging spectroscopy of the human ocular fundus in vivo. J Biomed Opt 1997; 2: 418–425.

    Article  PubMed  Google Scholar 

  28. Gabel V-P, Birngruber R, Hillerikamp F. Die Lichtabsorption am Augenhintergrund. GSF-Bericht A 55, Gesellschaft fur Strahien- und Umweltforschung mbH, München, 1976.

    Google Scholar 

  29. Schweitzer D, Hupfer U, Hammer M, Scibor M. Discrimination between ARMD-patients and normals by reflectometric data. Invest Ophthalmol Vis Sci 1996; 37: 548.

    Google Scholar 

  30. Bone RA, Landrurn JT, Fernandez L, Tarsis SL: Analysis of the macular pigment by HPLC: Retinal distribution and age study. Invest Ophthalmol Vis Sci 1988; 29: 843–849.

    PubMed  CAS  Google Scholar 

  31. Gerster H. Antioxidant protection of the ageing macula. Age Ageing 1991; 20: 60 – 69.

    Article  PubMed  CAS  Google Scholar 

  32. Schalch W, Werner P. Vitamins and carotenoids — a promising approach to reducing the rise of coronary heart disease, cancer; and eye disease. Adv Exp Med Biol 1994; 366; 335–350.

    Article  PubMed  CAS  Google Scholar 

  33. Sommerburg O, Keunen JEE, Bird AC, van Kuijk FJGM. Fruits and vegetables that are sources for lutein and Zeaxantin: the macular pigment in human eyes. Br J Ophthalmol 1998; 82: 907–910.

    Article  PubMed  CAS  Google Scholar 

  34. Young RW. Solar radiation and age related macular degeneration. Surv Ophthalmol 1998; 32: 252–269.

    Article  Google Scholar 

  35. Sachsenweger M. Augenheilkunde. Hippokrates Verlag, Stuttgart, 1994.

    Google Scholar 

  36. Snyder AW. Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, 1975.

    Chapter  Google Scholar 

  37. Snyder AW. Photoreceptor optics — theoretical principles. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, 1975.

    Chapter  Google Scholar 

  38. van de Kraats J, Berendschot TTJM, van Norren. The pathways of light measured in fundus reflectometry. Vision Res 1996; 36: 2229–2247.

    Article  PubMed  Google Scholar 

  39. DeLint PJ, Berendschot TTJM, van Nonren D. A comparison of the optical stiles-crawford effect and retinal densitometry in a clinical setting. Invest Ophthalmol 1998; 39: 1519–1523.

    CAS  Google Scholar 

  40. Cristini G, Cennarno O, Daponte P. Choroidal thickness in primary glaucoma. Ophthalmologica 1991; 202: 81–85.

    Article  PubMed  CAS  Google Scholar 

  41. Nickla DL, Wildsoet C, Wallman J. Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 1998; 66: 163–181.

    Article  PubMed  CAS  Google Scholar 

  42. Ramrattan RS, van der Schaft TL, Mooy CM, de Bruijn WC, Mulder PO, de Jong PT. Morphometric analysis of Bruch’s membrane, the choriocapillaries, and the choroid in aging. Invest Ophthalmol Vis Sci 1994; 35: 2857–64.

    PubMed  CAS  Google Scholar 

  43. Kubota T, Jonas JB, Naumann GOH. Decreased chonoidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 1993; 77: 430–432.

    Article  PubMed  CAS  Google Scholar 

  44. Yin ZQ, Vaegan Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997; 6: 23–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hammer, M., Schweitzer, D., Thamm, E., Kolb, A. (2001). Non-invasive measurement of the concentration of melanin, xanthophyll, and hemoglobin in single fundus layers in vivo by fundus reflectometry. In: Sampaolesi, J.R. (eds) Laser Scanning: Update 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0322-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0322-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3866-9

  • Online ISBN: 978-94-010-0322-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics