Skip to main content

Delocalized Electrons as a Source of Non-Linearity: Electron-Phonon Coupling and Environmental Effects Beyond Perturbation Theory

  • Chapter
Molecular Low Dimensional and Nanostructured Materials for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 59))

Abstract

The electronic revolution in the last century was based on the development of devices with a non-linear current vs voltage response. If we want to res-cale our devices at the molecular level to drive a molecular-electronic or a photonic revolution, we need molecular materials with a strongly non- linear behavior. Conjugated electrons, with their non-additive properties, are an obvious source of non-linearity in molecular materials, and conjugated polymers and molecules are among the most promising materials for advanced applications. More generally, the presence of delocalized electrons makes mixed-valence compounds and/or charge transfer (CT) salts good candidates for non-linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mulliken, R.S. (1952) Molecular compounds and their spectra, J. Am. Chem. Soc. 74, 811–824.

    Article  CAS  Google Scholar 

  2. Hush, N.S. (1967) Inter valence-transfer absorption. Part 2. Theoretical considera-tions and spectroscopic data, Progr. Inorg. Chem. 8, 391–444.

    Article  CAS  Google Scholar 

  3. Oudar, J.L. and Chemla, D.S. (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, J. Chem. Phys. 66, 2664–2668.

    Article  CAS  Google Scholar 

  4. Painelli, A. (1998) Vibronic contribution to static NLO properties: exact results for the DA dimer, Chem. Phys. Lett. 285, 352–358.

    Article  CAS  Google Scholar 

  5. Del Freo, L. and Painelli, A. (2001) Anharmonicity and NLO responses: an exact diagonalization study, Chem. Phys. Lett. 338, 208–216.

    Article  CAS  Google Scholar 

  6. Painelli, A., Del Freo, L., and Terenziani, F. (2001) Vibronic contributions to res-onant NLO responses: two-photon absorption in push-pull chromophores, Chem. Phys. Lett., in press.

    Google Scholar 

  7. Painelli, A. and Terenziani, F. (2000) Optical spectra of push-pull chromophores in solution: a simple model, J. Phys. Chem. A 104, 11041–11048.

    Article  CAS  Google Scholar 

  8. Painelli, A. (1999) Amplification of NLO responses: vibronic and solvent effects in push-pull polyenes, Chem. Phys. 245, 185–197.

    Article  CAS  Google Scholar 

  9. Reichardt, C. (1994) Solvatochromic dyes as solvent polarity indicators, Chem. Rev. 94, 2319–2358.

    Article  CAS  Google Scholar 

  10. Liptay, W. (1969) Electrochromism and solvatochromism, Angew. Chemie 8, 177–188.

    Article  CAS  Google Scholar 

  11. Painelli, A. and Terenziani, F. (1999) A non-perturbative approach to solvato-chromic shifts of push-pull chromophores, Chem. Phys. Lett. 312, 211–220.

    Article  CAS  Google Scholar 

  12. Kovalenko, S.A., Ruthmann, J., and Erasting, N.P. (1997) Ultrafast Stokes shift and excited-state transient absorption of coumarin 153 in solution, Chem. Phys. Lett. 271, 40–50.

    Article  CAS  Google Scholar 

  13. Baldwin, J.W., et al. (1999) Spectroscopic studies of hexadecylquinolinium tricyanoquinodimethanide, J. Phys. Chem. B 103, 4269–4277.

    Article  CAS  Google Scholar 

  14. Terenziani, F., Painelli, A., and Comoretto, D. (2000) Solvation effects and in-homogeneous broadening in optical spectra of phenol blue, J. Phys. Chem. A 104, 11049–11054.

    Article  CAS  Google Scholar 

  15. Plaza, P., et al. (2000) Excited-state dynamics in polar solvents of push-pull polyenes designed for nonlinear optics, J. Phys. Chem. A 104, 2396–2401.

    Article  CAS  Google Scholar 

  16. Kovalenko, S.A., et al. (1998) Femtosecond hole-burning spectroscopy with stimu-lated emission pumping and supercontinuum probing, J. Chem. Phys. 109, 1894–1900.

    Article  CAS  Google Scholar 

  17. Painelli, A. and Terenziani, F. (2001) Linear and non-linear optical properties of push-pull chromophores: vibronic and solvation effects beyond perturbation theory, Synth. Metals, in press.

    Google Scholar 

  18. Macak, P., et al. (2000) Electronic and vibronic contributions to two-photon absorp-tion of molecules with multi-branched structures, J. Chem. Phys. 113, 7055–7061.

    Article  CAS  Google Scholar 

  19. Painelli, A., et al. (1997) Infrared intensity and local vibrations of charged solitons, Phys. Rev. B 56, 15100–15108.

    Article  CAS  Google Scholar 

  20. Soos, Z.G. (1978) Phenazine cation radical salts: charge-transfer complexes with TCNQ, Ann. N.Y. Acad. Sci. 313, 442–458.

    Article  CAS  Google Scholar 

  21. Kishida, H., et al. (2000) Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators, Nature 405, 929–932.

    Article  CAS  Google Scholar 

  22. Anusooya-Pati Y., Soos, Z.G., and Painelli, A. (2001) Symmetry crossover and excitation thresholds at the neutral-ionic transition of the modified Hubbard model, Phys. Rev. B 63, 205118/1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Painelli, A., Del Freo, L., Terenziani, F. (2002). Delocalized Electrons as a Source of Non-Linearity: Electron-Phonon Coupling and Environmental Effects Beyond Perturbation Theory. In: Graja, A., Bułka, B.R., Kajzar, F. (eds) Molecular Low Dimensional and Nanostructured Materials for Advanced Applications. NATO Science Series, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0349-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0349-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0578-7

  • Online ISBN: 978-94-010-0349-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics