Skip to main content

Evolutionary patterns in auxin action

  • Chapter
Auxin Molecular Biology

Abstract

This review represents the first effort ever to survey the entire literature on auxin (indole-3-acetic acid, IAA) action in all plants, with special emphasis on the green plant lineage, including charophytes (the green alga group closest to the land plants), bryophytes (the most basal land plants), pteridophytes (vascular non-seed plants), and seed plants. What emerges from this survey is the surprising perspective that the physiological mechanisms for regulating IAA levels and many IAA-mediated responses found in seed plants are also present in charophytes and bryophytes, at least in nascent forms. For example, the available evidence suggests that the apical regions of both charophytes and liverworts synthesize IAA via a tryptophan-independent pathway, with IAA levels being regulated via the balance between the rates of IAA biosynthesis and IAA degradation. The apical regions of all the other land plants utilize the same class of biosynthetic pathway, but they have the potential to utilize IAA conjugation and conjugate hydrolysis reactions to achieve more precise spatial and temporal control of IAA levels. The thallus tips of charophytes exhibit saturable IAA influx and efflux carriers, which are apparently not sensitive to polar IAA transport inhibitors. By contrast, two divisions of bryophyte gametophytes and moss sporophytes are reported to carry out polar IAA transport, but these groups exhibit differing sensitivities to those inhibitors. Although the IAA regulation of charophyte development has received almost no research attention, the bryophytes manifest a wide range of developmental responses, including tropisms, apical dominance, and rhizoid initiation, which are subject to IAA regulation that resembles the hormonal control over corresponding responses in seed plants. In pteridophytes, IAA regulates root initiation and vascular tissue differentiation in a manner also very similar to its effects on those processes in seed plants. Thus, it is concluded that the seed plants did not evolve de novo mechanisms for mediating IAA responses, but have rather modified pre-existing mechanisms already operating in the early land plants. Finally, this paper discusses the encouraging prospects for investigating the molecular evolution of auxin action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

IAA:

auxin (indole-3-acetic acid)

NAA:

naphtalene acetic acid

NPA:

N-(1-naphthyl)phthalamic acid

PCIB:

p-chlorophenoxyisobutyric acid

2,4,6-T:

2,4,6-trichlorophenoxyacetic acid

TIBA:

2,3,5-triidobenzoic acid

References

  • Albaum, H.G. 1938. Inhibition due to growth hormones in fern prothallia and sporophytes. Amer. J. Bot. 25: 124–133.

    Article  CAS  Google Scholar 

  • Aloni, R. 1995. The induction of vascular tissues by auxin and cytokinin. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry, and Molecular Biology, 2nd ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 531–546.

    Google Scholar 

  • Ashen, J.B., Cohen, J.D. and Goff, L.J. 1999. GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine red alga Prionitis lanceolata Harvey. J. Phycol. 35: 493–500.

    Article  CAS  Google Scholar 

  • Atzorn, R., Bopp, M. and Merdes, U. 1989. The physiological role of indole acetic acid in the moss Funaria hygrometrica Hedw. II. Mutants of Funaria hygrometrica which exhibit enhanced catabolism of indole-3-acetic acid. J. Plant Physiol. 135: 526–530.

    Article  Google Scholar 

  • Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. and Doolittle, W.F. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972–977.

    Article  PubMed  CAS  Google Scholar 

  • Baldi, B.G., Mäher, B.R., Slovin, J.P. and Cohen, J.D. 1991. Stable isotope labeling, in vivo, of D-and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95: 1203–1208.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, B. 1997. Auxin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 51–66.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B. and Feldmann, K.A. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948–950.

    Article  PubMed  CAS  Google Scholar 

  • Berleth, T., Mattsson, J., and Hardtke, C.S. 2000. Vascular continuity and auxin signals. Trends Plant Sci. 5: 387–393.

    Article  PubMed  CAS  Google Scholar 

  • Bhatla, S.C. and Bopp, M. 1985. The hormonal regulation of protonemal development in mosses. III. Auxin-resistant mutants of the moss Funaria hygrometrica Hedw. J. Plant Physiol. 120: 233–243.

    Article  CAS  Google Scholar 

  • Bhatla, S.C., Kapoor, S., and Khurana, J.P. 1996. Involvement of calcium in auxin-induced cell differentiation in the protonema of the wild strain and auxin mutants of the moss Funaria hygrometrica. J. Plant Physiol. 147: 547–552.

    Article  CAS  Google Scholar 

  • Bhattacharya, D., Aubry, J., Twait, E.C. and Jurk, S. 2000. Actin gene duplication and the evolution of morphological complexity in land plants. J. Phycol. 36: 813–820.

    Article  CAS  Google Scholar 

  • Bialek, K., Michalczuk, L. and Cohen, J.D. 1992. Auxin biosynthesis during seed germination in Phaseolus vulgaris. Plant Physiol. 100:509–517.

    Article  PubMed  CAS  Google Scholar 

  • Bilderback, D.E. 1984. Phototropism of Selaginella: the role of the small dorsal leaves and auxin. Am. J. Bot. 71: 1330–1337.

    Article  CAS  Google Scholar 

  • Blakely, L.M., Blakely, R.M., Colowit, P.M. and Elliott, D.S. 1988. Experimental studies on lateral root formation in radish seedling roots. II. Analysis of dose-response to endogenous auxin. Plant Physiol. 87: 414–419.

    Article  PubMed  CAS  Google Scholar 

  • Bold, H.C. and Wynne, M. J. 1985. Introduction to the Algae. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Bold, H.C., Alexopoulos, C.I. and Delevoryas, T. 1987. Morphology of Plants and Fungi, 5th ed. Harper & Row, New York.

    Google Scholar 

  • Bopp, M. 1980. The hormonal regulation of morphogenesis in mosses. In: F. Skoog (Ed.) Plant Growth Substances 1979, Springer-Verlag, Berlin, pp. 351–361.

    Chapter  Google Scholar 

  • Bradley, P.M. 1991. Plant hormones do have a role in controlling growth and development in algae. J. Phycol. 27: 317–321.

    Article  CAS  Google Scholar 

  • Braun, M. 1997. Gravitropism in tip-growing cells. Planta 203: S11–S19.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.E., Rashotte, A.M., Murphy, A.S., Normanly, J., Tague, B.W., Peer, W.A., Taiz, L. and G.K. Muday. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126:524–535.

    Article  PubMed  CAS  Google Scholar 

  • Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swamp, R., Graham, N., Inzé, D., Sandberg, G., Casero, P.J. and Bennett, M. 2001. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852.

    PubMed  CAS  Google Scholar 

  • Chopra, R.N. and Vashistha, B.D. 1990. The effect of auxins and antiauxins on shoot-bud induction and morphology in the moss, Bryum atrovirens Will. ex Brid. Aust. J. Bot. 38: 177–184.

    Article  CAS  Google Scholar 

  • Christianson, M.L. 1999. Control of morphogenesis in bryophytes. In: A.J. Shaw and B. Gofflnet (Eds.) Bryophyte Biology, Cambridge University Press, Cambridge, UK, pp. 199–224.

    Google Scholar 

  • Cohen, J.D. and Bandurski, R.S. 1982. Chemistry and physiology of the bound auxins. Annu. Rev. Plant Physiol. 33: 403–430.

    Article  CAS  Google Scholar 

  • Cooke, T.J., Racusen, R.H. and Cohen, J.D. 1993. The role of auxin in plant embryogenesis. Plant Cell 5: 1494–1495.

    PubMed  CAS  Google Scholar 

  • Cooke, T.J., Poli, DB., Sztein, A.E. and Cohen, J.D. 2001. Evolutionary trends in auxin regulation and their potential role in the rapid diversification of land plants. Evolution of Plant Physiology Symposium Abstracts, Linnean Society, London, p. 12.

    Google Scholar 

  • Cove, D.J. and Ashton, N.W. 1984. Hormonal regulation of gametophytic development in bryophytes. In: A.F. Dryer and J. F. Duckett (Eds.) The Experimental Biology of Bryophytes, Academic Press, London, pp. 177–201.

    Google Scholar 

  • Croxdale, J. 1976. Hormones and apical dominance in the fern Davallia. J. Exp. Bot. 27: 801–815.

    Article  CAS  Google Scholar 

  • Crum, H. 2001. Stuctural Diversity of Bryophytes. University of Michigan Herbarium, Ann Arbor, MI.

    Google Scholar 

  • Davidonis, G.H. and Munroe, M.H. 1972. Apical dominance in Marchantia: correlative inhibition of neighbor lobe growth. Bot. Gaz. 133: 177–184.

    Article  CAS  Google Scholar 

  • Delwiche, C.F. 1999. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154: S164–S177.

    Article  PubMed  Google Scholar 

  • Dibb-Fuller, J.E. and Morris, D.A. 1992. Studies on the evolution of auxin carriers and phytotropin receptors: transmembrane auxin transport in unicellular and multicellular Chlorophyta. Planta 186: 219–226.

    Article  CAS  Google Scholar 

  • Dolan, L. 1998. Pointing roots in the right direction: the role of auxin transport in response to gravity. Genes Dev. 12: 2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Duff, R.J. and Nickrent, D.L. 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am. J. Bot. 86: 372–386.

    Article  PubMed  CAS  Google Scholar 

  • Eisen, J.A. 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genomic Res. 8: 163–167.

    CAS  Google Scholar 

  • Ellis, J.G. and Thomas, R.J. 1985. Phototropism of Pellia: evidence for mediation by auxin stimulated acid efflux. J. Plant Physiol. 121:259–264.

    Article  CAS  Google Scholar 

  • Erwin, D., Valentine, J. and Jablonski, D.. 1997. The origin of animal body plans. Am. Sci. 85: 126–137.

    Google Scholar 

  • Estelle, M. 1998. Polar auxin transport: new support for an old model. Plant Cell 10: 1775–1778.

    PubMed  CAS  Google Scholar 

  • Evans, LV. and Trewavas, A.J. 1991. Is algal development controlled by plant growth substances? J. Phycol. 27: 322–326.

    Article  CAS  Google Scholar 

  • Gaal, D.J., Dufresne, S.J. and Maravolo, N.C. 1982. Transport of 14C-indoleacetic acid in the hepatic Marchantia polymorpha. Bryologist 85: 410–418.

    Article  Google Scholar 

  • Geier, U., Werner, O. and Bopp, M. 1990. Indole-3-acetic acid uptake in isolated protoplasts of the moss Funaria hygrometrica. Physiol. Plant. 80: 584–592.

    Article  CAS  Google Scholar 

  • Gifford, E.M. and Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd ed. Freeman, New York.

    Google Scholar 

  • Goldsmith, M.H.M. 1977. The polar transport of auxin. Annu. Rev. Plant Physiol. 28: 439–478.

    Article  CAS  Google Scholar 

  • Graham, L.E. 1993. Origin of Land Plants. Wiley, New York.

    Google Scholar 

  • Graham, L.E., Cook, M.E. and Busse, J.S. 2000. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc. Natl. Acad. Sci. USA 97: 4535–4540.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, W. 1957. Die Induktion der Polarität bei der Spore von Equisetum. Planta 49: 61–90.

    Article  CAS  Google Scholar 

  • Hébant, C. 1977. The Conducting Tissues of Bryophytes. J. Cramer, Vaduz.

    Google Scholar 

  • Hertel, R., Lomax, T.L., and Briggs, W.R. 1983. Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157: 193–201.

    Article  CAS  Google Scholar 

  • Hickok, L.G. and Kiriluk, R.M. 1984. Effects of auxins on gametophyte development and sexual differentiation in the fern Ceratopteris thalictroides (L.) Brongn. Bot. Gaz. 145: 37–42.

    Article  CAS  Google Scholar 

  • Hickok, L.G., Warne, T.R., and Fribourg, R.S. 1995. The biology of the fern Ceratopteris and its uses as a model system. Int. J. Plant Sci. 156: 332–345.

    Article  Google Scholar 

  • Jacobs, M. and Hertel, R. 1978. Auxin binding to subcellular fractions from Cucurbita hypocotyls: in vitro evidence for an auxin transport carrier. Planta 142: 1–10.

    Article  CAS  Google Scholar 

  • Jacobs, M. and Rubery P.H. 1988. Naturally occurring auxin transport regulators. Science 241: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, W.P., Falkenstein, K. and Hamilton, R.H. 1985. Nature and amount of auxin in algae. IAA from extracts of Caulerpa paspaloides (Siphonales). Plant Physiol. 78: 844–848.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, L.F. 1968. Localization in the developing Fucus egg and the general role of localizing currents. Adv. Morphogen. 7: 295–328.

    CAS  Google Scholar 

  • Jayaswal, R.K. and Johri, M.M. 1985. Occurrence and biosynthesis of auxin in protonema of the moss Funaria hygrometrica. Phytochemistry 24: 1211–1214.

    Article  CAS  Google Scholar 

  • Karol, K.G., McCourt, R.M., Cimino, M.T., and Delwiche, C.F. 2001. The closest living relatives to the land plants. Science 294: 2351–2353.

    Article  PubMed  CAS  Google Scholar 

  • Kato, Y. 1957. The effects of colchicine and auxin on rhizoid formation of Dryopteris erythrosora. Bot. Mag. 70: 258–263.

    CAS  Google Scholar 

  • Kaufman, P.B., Wu, L., Brock, T.G. and Kim, D. 1995. Hormones and their orientation of growth. In: P.J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology, 2nd ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 547–571.

    Google Scholar 

  • Kaul, K.N., Mitra, G.C. and Tripathi, B.K. 1962. Responses of Marchantia in aseptic culture to well-known auxins and antiauxins. Ann. Bot. 26: 447–467.

    CAS  Google Scholar 

  • Kenrick, P. and Crane, P.R. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. Smithsonian Institute Press, Washington, D.C.

    Google Scholar 

  • Klambt, D., Knauth, B. and Dittmann, I. 1992. Auxin dependent growth of rhizoids of Chara globularis. Physiol. Plant. 85: 537–540.

    Article  Google Scholar 

  • Knoll, A.H. and Carroll, S.B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science 284: 2129–2137.

    Article  PubMed  CAS  Google Scholar 

  • Koshiba, T., Kamiya, Y. and Iino, M. 1995. Biosynthesis of indole-3-acetic acid from 1-tryptophan in coleoptile tips of maize (Zea mays). Plant Cell Physiol. 36: 1503–1510.

    CAS  Google Scholar 

  • Krogan, N.T. and Ashton, N.W. 2000. Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues. New Phytol. 147: 505–517.

    Article  CAS  Google Scholar 

  • Kumra, S. and Chopra, R.N. 1987. Callus initiation, its growth and differentiation in the liverwort Asterella wallichiana (Lehm. et Lindenb.) Groelle. I. Effect of auxins and cytokinins. J. Hattori Bot. Lab. 63: 237–245.

    CAS  Google Scholar 

  • LaRue, C.D. and Narayanswami, S. 1957. Auxin inhibition in the liverwort Lunularia. New Phytol. 56: 61–70.

    Article  Google Scholar 

  • Lehnert, B. and Bopp, M. 1983. The hormonal regulation of protonema development in mosses. I. Auxin-cytokinin interaction. Z. Pflanzenphysiol. 110: 379–391.

    CAS  Google Scholar 

  • Ligrone, R., Duckett, J.G. and Renzaglia, K.S. 2000. Conducting tissues and phyletic relationships of bryophytes. Phil. Trans. R. Soc. Lond. Ser. B 355: 795–813.

    Article  CAS  Google Scholar 

  • Liu, C.-M., Xu, Z.-H. and Chua, N.-H. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630.

    PubMed  CAS  Google Scholar 

  • Lomax, T.L., Muday, G.K. and Rubery, P.H. 1995. Auxin transport. In: P. J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry, and Molecular Biology, 2nd ed., Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 509–530.

    Google Scholar 

  • Lu, P. and Jernstedt, J.A. 1996. Rhizophore and rood development in Selaginella martensii: meristem transitions and identity. Int. J. Plant Sci. 157: 180–194.

    Article  Google Scholar 

  • Lyndon, R.F. 1998. The Shoot Apical Meristem: Its Growth and Development. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ma, Y. and Steeves, T.A. 1992. Auxin effects on vascular differentiation in Ostrich fern. Ann. Bot. 70: 277–282.

    CAS  Google Scholar 

  • MacQuarrie, G. and von Maltzahn, K. 1959. Correlations affecting regeneration and reactivation in Splachnum ampullaceum (L.) Hedw. Can. J. Bot. 37: 121–134.

    Article  Google Scholar 

  • Maravolo, N.C. 1976. Polarity and localization of auxin movement in the hepatic, Marchantia polymorpha. Am. J. Bot. 63: 529–531.

    Article  Google Scholar 

  • Maravolo, N.C. 1980. Control of development in hepatics. Bull. Torrey Bot. Club 107: 308–324.

    Article  CAS  Google Scholar 

  • Maravolo, N.C. and Voth, P.D. 1966. Morphogenic effects of three growth substances on Marchantia gemmalings. Bot. Gaz. 127: 79–86.

    Article  CAS  Google Scholar 

  • Marchant, A., Kargul, J., May, ST., Muller, P., Delbarre, A., Perrot-Rechenmann, C. and Bennett, M. J. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 18: 2066–2073.

    Article  PubMed  CAS  Google Scholar 

  • Meicenheimer, R.D. 1981. Changes in Epilobium phyl-lotaxy induced by N-1-naphthylphthalmic acid and α-4-chlorophenoxyisobutric acid. Am. J. Bot. 68: 1139–1154.

    Article  CAS  Google Scholar 

  • Michalczuk, L., Cooke, T.J. and Cohen, J.D. 1992a. Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31: 1097–1103.

    Article  CAS  Google Scholar 

  • Michalczuk, L., Ribnicky, D.M., Cooke, T.J. and Cohen, J.D. 1992b. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100: 1346–1353.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A., Guan, C., Galweiler, L., Tanzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E. and Palme, K. 1998. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 17: 6903–6911.

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser, J.L., Feldman, L.J. and Zambryski, P.C. 2000. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127: 3877–3888.

    PubMed  CAS  Google Scholar 

  • Nickrent, D.L., Parkinson, C.L., Palmer, J.D. and Dugg, R.J. 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 17: 1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • Niklas, K.J. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago.

    Google Scholar 

  • Nonhebel, H.M., Cooney, T.P. and Simpson, R. 1993. The route, control and compartmentation of auxin synthesis. Aust. J. Plant Physiol. 20: 527–539.

    Article  CAS  Google Scholar 

  • Normanly, J. 1997. Auxin metabolism. Physiol. Plant. 100: 431–442.

    Article  CAS  Google Scholar 

  • Normanly, J., Cohen, J.D. and Fink, G.R. 1993. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 90: 10355–10359.

    Article  PubMed  CAS  Google Scholar 

  • Nyman, L.P and Cutter, E.G. 1981. Auxin-cytokinin interaction in the inhibition, release, and morphology of gametophore buds of Plagiomnium cupidatum from apical dominance. Can. J. Bot. 59: 750–760.

    Article  CAS  Google Scholar 

  • Palme, K. and Galweiler, L. 1999. PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 2: 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Partanen, J.N. and Partanen, C.R. 1963. Observations on the culture of roots of the Bracken fern. Can. J. Bot. 41: 1657–1661.

    Article  CAS  Google Scholar 

  • Peterson, K.J. and Davidson, E.H. 2000. Regulatory evolution and the origin of the bilaterians. Proc. Natl. Acad. Sci. USA 97: 4430–4433.

    Article  PubMed  CAS  Google Scholar 

  • Pilate, G., Sossountzov, L. and Miginiac, E. 1989. Hormone levels and apical dominance in the aquatic fern Marsilea drummondii A. Br. Plant Physiol. 90: 907–912.

    Article  CAS  Google Scholar 

  • Pryer, K.M., Schneider, H., Smith, A.R., Cranfill, R., Wolf, P.G., Hunt, J.S. and Sipes, S.D. 2001. Horsetails and ferns are a monoplyletic group and the closest living relatives to seed plants. Nature 409: 618–622.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y.-L., Cho, Y., Cox, J.C. and Palmer, J.D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y.-L. and Lee, J. 2000. Transition to a land flora: a molecular perspective. J. Phycol. 36: 799–802.

    Article  CAS  Google Scholar 

  • Raff, R.A. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago.

    Google Scholar 

  • Rapparini, F., Cohen, J.D. and Slovin, J.P. 1999. Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27: 139–144.

    Article  CAS  Google Scholar 

  • Raven, J.A. 1974. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74: 163–172.

    Article  Google Scholar 

  • Reed, R.C., Brady, S.R. and Muday, G.K. 1998. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118: 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt, D., Mandel, T and Kuhlemeier, C. 2000. Auxin regulates the initiation and radial position of plant later al organs. Plant Cell 12: 507–518.

    PubMed  CAS  Google Scholar 

  • Reski, R. 1999. Molecular genetics of Physcomitrella. Planta 208: 301–309.

    Article  CAS  Google Scholar 

  • Ribnicky, D.M., Ilic, N., Cohen, J.D., and Cooke, T.J. 1996. The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism. The implications for carrot somatic embryogenesis. Plant Physiol. 112:549–558.

    PubMed  CAS  Google Scholar 

  • Ribnicky, D.M., Cohen, J.D., Hu, W.-S. and T.J. Cooke. 2001. An auxin surge following fertilization in carrots: a general mechanism for regulating plant totipotency. Planta, in press.

    Google Scholar 

  • Roberts, L.W., Gahan, P.B. and Aloni, R. 1988. Vascular Differentiation and Plant Growth Regulators. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Rose, S. and Bopp, M. 1983. Uptake and polar transport of indoleacetic acid in moss rhizoids. Physiol. Plant. 58: 57–61.

    Article  CAS  Google Scholar 

  • Rose, S., Rubery, P.H. and Bopp, M. 1983. The mechanism of auxin uptake and accumulation in moss protonemata. Physiol. Plant. 58: 52–56.

    Article  CAS  Google Scholar 

  • Rubery, P.H. and Sheldrake, A.R. 1974. Carrier-mediated auxin transport. Planta 188: 101–121.

    Article  Google Scholar 

  • Sachs, T. 1991. Cell polarity and tissue patterning in plants. Development (Suppl.) 1: 83–93.

    Google Scholar 

  • Schaefer, D.G. and Zryd, J.P. 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11: 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  • Schiavone, F.M. and Cooke, T.J. 1986. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell. Diff. 21:53–62.

    Article  Google Scholar 

  • Schnepf, E., Herth, W. and Morre D.J. 1979. Elongation growth of setae of Pellia (Bryophyta): effects of auxin and inhibitors. Z. Pflanzenphysiol. 94: 211–217.

    CAS  Google Scholar 

  • Sembdner, G., Gross, D., Liebisch, W. and Schneider, G. 1981. Biosynthesis and metabolism of plant hormones. In. J. MacMillan (Ed.) Hormonal Regulation of Plant Development. I. Molecular Aspects of Plant Hormones. Encyclopedia of Plant Physiology, Vol. 9, Springer-Verlag, Berlin, pp. 281–444.

    Google Scholar 

  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. 1997. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124: 4481–4491.

    PubMed  CAS  Google Scholar 

  • Sievers, A. and Schröter, K. 1971. Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta 96: 339–353.

    Article  Google Scholar 

  • Sievers, A., Buchen, B. and Hodick, D. 1996. Gravity sensing in tip-growing cells. Trends Plant Sci. 1: 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Slovin, J.P., Bandurski, R.S. and Cohen, J.D. 1999. Auxin. In: P.J.J. Hooykaas, M.A. Hall and K.R. Libbenga (Eds.) Biochemistry and Molecular Biology of Plant Hormones, Elsevier Science, Amsterdam, pp. 115–140.

    Chapter  Google Scholar 

  • Stange, L. 1971. Effects of morphactins and of auxin on the formation of meristematie centres in Riella helicophylla. Ind. J. Plant Physiol. 14: 44–54.

    Google Scholar 

  • Stange, L. 1977. Meristem differentiation in Riella helicophylla (Bory et Mont.) Mont. under the influence of auxin and anti-auxin. Planta 135: 289–295.

    Article  CAS  Google Scholar 

  • Staves, M.P. 1997. Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203: S79–S84.

    Article  PubMed  CAS  Google Scholar 

  • Steeves, T.A. and Briggs, W.R. 1960. Morphogenetic studies on Osmunda cinnamomea L. The auxin relationships of expanding fronds. J. Exp. Bot. 11: 45–67.

    Article  CAS  Google Scholar 

  • Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C. L., Paris, S., Galweiler, L., Palme, K. and Jurgens, G. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM.ARF GEF. Science 286: 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Sussmann, M.R. and Goldsmith, M.H.M. 1981. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles. Planta 152: 13–18.

    Article  Google Scholar 

  • Swarup, R., Marchant, A. and Bennett, M.J. 2000. Auxin transport: providing a sense of direction during plant development. Biochem. Soc. Trans. 28: 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K. and Bennett, M. Localisation of the auxin permease AUX1 in the Arabidopsis root apex reveals two novel functionally distinct hormone transport pathways. Genes Dev., in press.

    Google Scholar 

  • Sztein, A.E., Cohen, J.D., Slovin, J.P. and Cooke, T.J. 1995. Auxin metabolism in representative land plants. Am. J. Bot. 82: 1514–1521.

    Article  CAS  Google Scholar 

  • Sztein, A.E., Cohen, J.D., de la Fuente, I.G. and Cooke, T.J. 1999 Auxin metabolism in mosses and liverworts. Am. J. Bot. 86: 1544–1555.

    Article  CAS  Google Scholar 

  • Sztein, A.E., Cohen, J.D. and Cooke, T.J. 2000. Evolutionary patterns in the auxin metabolism of green plants. Int. J. Plant Sci. 161: 849–859.

    Article  CAS  Google Scholar 

  • Sztein, A. E., Cohen, J.D. and T. J. Cooke. 2001. Indole-3-acetic acid biosynthesis in isolated axes from germinating been seeds: the effect of wounding on biosynthetic pathway. Plant Growth Regul., in press.

    Google Scholar 

  • Tamas, I.A. 1995. Apical dominance. In: P. J. Davies (Ed.) Plant Hormones: Physiology, Biochemistry, and Molecular Biology, 2nd ed. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 572–597.

    Google Scholar 

  • Taylor, T.N. and Taylor, E.L. 1993. The Biology and Evolution of Fossil Plants. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.-U. and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115–149.

    Article  PubMed  CAS  Google Scholar 

  • Theissen, G., Munster, T and Henschel, K. 2001. Why don’t mosses flower? New Phytol. 150: 1–5.

    Article  CAS  Google Scholar 

  • Thomas, R.J. 1980. Cell elongation in hepatics: the seta system. Bull. Torrey Bot. Club 107: 339–345.

    Article  Google Scholar 

  • Uggla, C., Mellerowicz, E.J. and Sundberg, B. 1998. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol. 117: 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Uggla, C., Moritz, T., Sandberg, G. and Sundberg, B. 1996. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci USA 93: 9282–9286.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, J.W., Jablonski, D. and Erwin, D.H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126: 851–859.

    PubMed  CAS  Google Scholar 

  • von Maltzahn, K.E. 1959. Interaction between kinetin and in-doleacetic acid in the control of bud reactivation in Splachnum ampullaceum (L.) Hedw. Nature 183: 60–61.

    Article  Google Scholar 

  • Wada, M. and Kadota, A. 1989. Photomorphogenesis of lower green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 169–191.

    Article  Google Scholar 

  • Walters, J. and Observe, D.J. 1979. Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Regnellidium diphyllum. Planta 146: 309–317.

    Article  CAS  Google Scholar 

  • Wardlaw, C.W. 1946. Experimental and analytical studies of pteri-dophytes. VIII. Further observations on bud development in Matteucia struthiopteris, Onoclea sensibilis, and species of Dryopteris. Ann. Bot. 10: 117–132.

    Google Scholar 

  • Webster, T.R. 1969. An investigation of angle-meristem development in excised stem segments of Selaginella martensii. Can. J. Bot. 47: 717–722.

    Article  Google Scholar 

  • Wildman, S.G., Ferri, M.G. and Bonner, J. 1947. The enzymatic conversion of tryptophan to auxin by spinach leaves. Arch. Biochem. 13: 131–144.

    PubMed  CAS  Google Scholar 

  • Williams, S. 1937. Correlation phenomena and hormones in Selaginella. Nature 139: 966.

    Article  CAS  Google Scholar 

  • Wochok, Z.S. and Sussex, I.M. 1973. Morphogenesis in Selaginella: auxin transport in the stem. Plant Physiol. 51: 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Wochok, Z.S. and Sussex, I.M. 1975. Morphogenesis in Selaginella. III. Meristem determination and cell differentiation. Dev. Biol. 47: 376–383.

    Article  PubMed  CAS  Google Scholar 

  • Wood, A.J., Oliver, M.J. and Cove, D.J. 2000. New frontiers in bryology and lichenology: bryophytes as model systems. Bryologist 103: 128–133.

    Article  Google Scholar 

  • Wright, A.D., Sampson, M.B., Neuffer, M.G., Michalczuk, L., Slovin, J.P and Cohen, J.D. 1991. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254: 998–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Cooke .

Editor information

Catherine Perrot-Rechenmann Gretchen Hagen

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cooke, T.J., Poli, D., Sztein, A.E., Cohen, J.D. (2002). Evolutionary patterns in auxin action. In: Perrot-Rechenmann, C., Hagen, G. (eds) Auxin Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0377-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0377-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3917-8

  • Online ISBN: 978-94-010-0377-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics