Skip to main content

Dynamic Partitioning of Neutral Polymers into a Single Ion Channel

  • Conference paper
Structure and Dynamics of Confined Polymers

Part of the book series: NATO Science Series ((ASHT,volume 87))

Abstract

Polymers partitioning into highly confined spaces can be studied using single nanometer-scale pores formed by protein ion channels. The ionic conductance of a channel depends on the state of occupancy of the pore by polymer and serves as a measure of polymer partitioning. Specifically, the movement of neutral polymer into the pore causes a reduction of the channel’s conductance. The mean conductance is used to determine the polymer partition coefficient and the conductance fluctuations report the rates at which polymer exchanges between the bulk and the pore. Three theoretical approaches to describe the steric interaction of polymer and a single pore (hard spheres, random flight model, and scaling theory) fail to describe the partitioning of poly(ethylene glycol) into two structurally and chemically different ion channels (Staphylococcus aureus α-hemolysin and alamethicin). In particular, these theories cannot account for the sharp molecular weight dependence of the partition coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon, S.M., Blobel, G. (1991) A protein-conductive channel in the endoplasmic reticulum. Cell 65, 371–380.

    Article  Google Scholar 

  2. Walter, P., Johnson, A.E. (1994) Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. em Cell, 78, 461–471.

    Article  Google Scholar 

  3. Bustamante, J.O., Hanover, J.A., Leipins, A. (1995) The ion channel behavior of the nuclear pore complex. J Membrane Biol. 146, 239–252.

    Google Scholar 

  4. Miller, R.V. (1998) Bacteria gene swapping in Nature. (1998) Scientific American 278, 66

    Article  ADS  Google Scholar 

  5. Zimmerberg, J., Parsegian, V.A. (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature (London) 323,36–39.

    Article  ADS  Google Scholar 

  6. Krasilnikov, O.V., Sabirov, R.Z., Ternovsky, V.I., Merzliak, P.G., Muratkodjaev, J.N. (1992) A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol. Immun. 105,93–100.

    Article  Google Scholar 

  7. Bezrukov, S.M., Vodyanoy, I. (1993) Probing alamethicin channels with water soluble polymers. Biophys. J. 64, 16–25.

    Article  ADS  Google Scholar 

  8. Parsegian V.A., Bezrukov, S.M., Vodyanoy, I. (1995) Watching small molecules move: Interrogating ionic channels using neutral solutes. Bioscience Repts. 15, 503–514.

    Article  Google Scholar 

  9. Korchev, Y.E., Bashford, C.L., Alder, G.M., Kasianowicz, J.J., Pasternak, C.A. (1995) Low conductance states of a single ion channel are not “closed”. J. Membrane Biol. 147, 233–239.

    Article  Google Scholar 

  10. Bezrukov, S.M., Vodyanoy, I. Brutyan, R.A., Kasianowicz, J.J. (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules, 29, 8517–8522.

    Article  ADS  Google Scholar 

  11. Desai, S.A., Rosenberg, R.L. (1997) Pore size of the malaria parasite’s nutrient channel. Proc. Natl. Acad. Sci. (USA) 94, 2045–2049.

    Article  ADS  Google Scholar 

  12. Bezrukov, S.M., Kasianowicz, J.J. (1997) The charge state of an ion channel controls neutral polymer entry into its pore. Eur. Biophys. J. 26, 471–476.

    Article  Google Scholar 

  13. Kaulin, Y.A., Schagina, L.V., Bezrukov, S.M., Maley, V.V., Feigin, A.M., Takemoto, J.Y., Teeter, J.H., Brand, J.G. (1998) Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys. J. 74, 2918–2925.

    Article  ADS  Google Scholar 

  14. Merzlyak, P.G., Yuldasheva, L.N., Rodrigues, C.G., Cameiro, C.M.M., Krasilnikov, O.V., Bezrukov, S.M. (1999) Polymeric nonelectrolytes to probe pore geometry: Application to the a-toxin transmembrane channel. Biophys. J. 77, 3023–3033.

    Article  Google Scholar 

  15. Colton, C.K., Satterfield, C.N., Lai, C.-J. (1975) Diffusion and partitioning of macromolecules within finely porous glass. AIChE J. 21, 289–298.

    Article  Google Scholar 

  16. Casassa, E.F. (1967) Equilibrium distribution of flexible polymer chains between a macroscopic solution phase and small voids. Polymer Lett. 5, 773–778.

    Article  Google Scholar 

  17. de Gennes, P.-G. (1979) Scaling Concepts in Polymer Physics,Cornell University Press, Ithaca, NY.

    Google Scholar 

  18. Grosberg, A.Yu., Khokhlov, A.R. (1994) Statistical Physics of Macromolecules,AIP Press, New York, NY.

    Google Scholar 

  19. Feher, G., Weissman, M. (1973) Fluctuation spectroscopy: determination of chemical reaction kinetics from the frequency spectrum of fluctuations. Proc. Nat. Acad. Sci. (USA) 70, 870–875.

    Article  ADS  Google Scholar 

  20. Berg, H. (1993) Random Walks in Biology, Princeton University Press, Princeton, NJ.

    Google Scholar 

  21. Bezrukov, S.M., Vodyanoy, I., Parsegian, V.A. (1994) Counting polymers moving through a single ion channel. Nature (London) 370, 279–281.

    Article  ADS  Google Scholar 

  22. Bezrukov, S.M. (2000) Ion channels as molecular Coulter counters to probe metabolite transport. J. Membrane Biol. 174, 1–13.

    Article  MathSciNet  Google Scholar 

  23. Bezrukov, S.M., Berezhkovskii, A.M., Pustovoit, M.A., Szabo, A. (2000) Particle number fluctuations in a membrane channel. J. Chem. Phys. 113, 8206–8211.

    Article  ADS  Google Scholar 

  24. Kasianowicz, J.J., Bezrukov S.M. (1995) Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys. J. 69, 94–105.

    Article  ADS  Google Scholar 

  25. Neher, E., Stevens, C.F. (1977) Conductance fluctuations and ionic pores in membranes. Ann. Rev. Biophys. Bioeng. 6, 345–381.

    Article  Google Scholar 

  26. DeFelice, L.J. (1981) Introduction to Membrane Noise, Plenum Press, New York, NY.

    Book  Google Scholar 

  27. Berestovskii, G.N., Ternovskii, V.I., Kataev, A.A. (2000) Allowing for polymer poly-dispersion as a necessary condition for determination of aqueous pore diameters in cells walls and membranes using polymers. Biofizika 45, 69–78.

    Google Scholar 

  28. Parsegian, V.A.; Rand, R.P.; Fuller N.L., Rau, D.C. (1986) Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 127, 400–416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bezrukov, S.M., Kasianowicz, J.J. (2002). Dynamic Partitioning of Neutral Polymers into a Single Ion Channel. In: Kasianowicz, J.J., Kellermayer, M.S.Z., Deamer, D.W. (eds) Structure and Dynamics of Confined Polymers. NATO Science Series, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0401-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0401-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0698-2

  • Online ISBN: 978-94-010-0401-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics