Skip to main content

Biomarkers of Pollution-Induced Oxidative Stress and Membrane Damage in Lichens

  • Chapter
Monitoring with Lichens — Monitoring Lichens

Part of the book series: NATO Science Series ((NAIV,volume 7))

Abstract

Pollutants cause many kinds of damage to organisms. Damage can occur at all levels of biological organization, from the components of individual cells to ecosystems (Figure 1) [84]. Many studies have shown that plants and lichens can be used to assess environmental contamination. Traditionally, the rate of accumulation of contaminants, geographical distribution or morphological modifications have been studied in “indicator” species (see chapters 2-7, this volume). However, it is now realized that the impact of pollutants can be measured more quickly by testing their effects on certain physiological processes of these indicators. Suitable processes are now termed “biomarkers”. An important consequence of air pollution is the increased production of reactive oxygen species (ROS) in organisms [71]. The aim of this chapter is to review the concept of biomarkers, outline mechanisms of free radical formation, damaging effects of ROS, and protection mechanisms against these. The use of both the deleterious effects and the defence mechanisms as actual and potential biomarkers in lichens is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acworth, I.N. and Bailey, P.B. (1995) The handbook of oxidative metabolism, ESA, Chlemsford.

    Google Scholar 

  2. Balachandran, S., Hurry, V.M., Kelley, S.E., Osmond, C.B., Robinson, S.A., Rohozinski, J., Seaton, G.G.R., and Sims, D.A. (1997) Concept of plant biotic stress some insights into stress physiology of virus-infected plants from the perspective of photosynthesis, Physiologia Plantarum 100, 203–213.

    Article  CAS  Google Scholar 

  3. Belnap, J. and Harper, K.T. (1990) Effects of a coal fired power plant on the rock lichen Rhizoplaca melanophthalma chlorophyll degradation and electrolyte leakage, The Bryologist 93, 309–312.

    Article  CAS  Google Scholar 

  4. Bolwell, G.P. (1999) Role of active oxygen species and NO in plant defense responses, Current Opinion in Plant Biology 2, 287–294.

    Article  CAS  Google Scholar 

  5. Brennan, R. and Schiestl, R.H. (1996) Cadmium is an inducer of oxidative stress in yeast, Mutation Research 356, 171–178.

    Article  Google Scholar 

  6. Brown, D.H. and Beckett, R.P. (1984) Minerals and lichens: acquisition localisation and effects, in C. Vicente, D.H. Brown and M.E. Legaz (eds.), Surface physiology of lichens, Universidad Complutense de Madrid, Madrid, pp. 127–149.

    Google Scholar 

  7. Brown, D.H. and Beckett, R.P. (1984) Uptake and effect of cations on lichen metabolism, Lichenologist 16, 173–188.

    Article  CAS  Google Scholar 

  8. Cañas, M.S. and Pignata, M.L. (1998) Temporal variation of pigments and peroxidation products in the lichen Parmotrema uruguense (Kremplh.) Hale transplanted to urban and non-polluted environments, Symbiosis 24, 147–162.

    Google Scholar 

  9. Carlas, M.S., Orellana, L., and Pignata, M.L. (1997) Chemical response of the lichens Parmotrema austrosinense and P. conferendum transplanted to urban and non-polluted environments, Annates Botanici Fennici 34, 27–34.

    Google Scholar 

  10. Carreras, H.A. and Pignata, M.L. (2001) Comparison among air pollutants, meteorological conditions and some chemical parameters in the transplanted lichen Usnea amblyoclada, Environmental Pollution 111, 45–52.

    Article  CAS  Google Scholar 

  11. Carreras, H.A., Gudiño, G.L., and Pignata, M.L. (1998) Comparative biomonitoring of atmospheric quality in five zones of Córdoba city (Argentina) employing the transplanted lichen Usnea sp., Environmental Pollution 103, 317–325.

    Article  CAS  Google Scholar 

  12. Caviglia, A.M. and Modenesi, P. (1999) Oxidative stress and ascorbic acid contents in Parmotrema reticulatum and Parmelia sulcata thalli, Lichenologist 31, 105–110.

    Google Scholar 

  13. Chaoui, A., Mazhoudi, S., Ghorbal, M.H., and El Ferjani, E. (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxydant enzyme activities in bean (Phaseolus vulgaris L.), Plant Science 127, 139–147.

    Article  CAS  Google Scholar 

  14. Cossu, C., Doyotte, A., Jacquin, M.C., and Vasseur, P. (1997) Mécanismes de formation des espèces réactives de l’oxygène, in L. Lagadic, T. Caquet, J.C. Amiard and F. Ramade (eds.), Biomarqueurs en ecotoxicologie aspects fondamentaux, Masson, Paris, pp. 125–148.

    Google Scholar 

  15. Cuny, D., Van Haluwyn, C., Shirali, P., Haguenoer, J.M., and Pesch, R. (2000) The concept of biomarker in lichenology — Application in bioindication survey, in The fourth IAL Symposium, Barcelona, Book of Abstracts.

    Google Scholar 

  16. Deltoro, V.I., Gimeno, C., Calatayud, A., and Barreno, E. (1999) Effects of SO2 on photosynthetic gas exchange, chlorophyll a fluorescence emission and antioxidant enzymes in the lichen Evernia prunastri and Ramalina farinacea, Physiologia Plantarum 105, 648–654.

    Article  CAS  Google Scholar 

  17. Depledge, M.H., Amaral-Mendes, J.J., Daniel, B., Halbrook, R.S., Klopper-Sams, P., Ernst, W.H.O., and Peterson, P.J. (1993) The role of biomarkers in environmental assessment (a) terrestrial plants, Ecotoxicology 3, 180–192.

    Google Scholar 

  18. Deruelle, S. and Petit, P.J.X. (1983) Preliminary studies on the net photosynthesis and respiration responses of some lichens to automobile pollution, Cryptogamie, Bryologie-Lichénologie 4, 269–278

    CAS  Google Scholar 

  19. Egger, R., Schlee, D., and Türk, R. (1994) Changes of physiological and biochemical parameters in the lichen Hypogymnia physodes (L.) Nyl. due to the action of air pollutants. A field study, Phyton 34, 229–242.

    CAS  Google Scholar 

  20. Elix, J.A., Whitton, A.A., and Sargent, M.V. (1984) Recent progress in the chemistry of lichen substances, in W. Herz, H. Griesbach and G.W. Kirby, (eds.), Progress in the chemistry of organic natural products 45, Springer Verlag, Wien, New York, pp. 103–234.

    Google Scholar 

  21. Elstner, E.F. (1982) Oxygen activation and oxygen toxicity, Annual Review of Plant Physiology 33, 76–96.

    Article  Google Scholar 

  22. Elstner, E.F. and Oßwald, W. (1994) Mechanisms of oxygen activation during plant stress, Proc. Roy. Soc. Edinburgh 102, 131–154.

    Google Scholar 

  23. Ernst, W.H.O. and Peterson, P.J. (1994) The role of biomarkers in environmental assessment (a) terrestrial plants, Ecotoxicology 3, 180–192.

    Article  Google Scholar 

  24. Esterbauer, H., Schaur, R.J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes, Free Radical Biol. Med. 11, 81–128.

    Article  CAS  Google Scholar 

  25. Fields, R.D. and St. Clair, L.L. (1984) A comparison of methods for evaulating SO2 impact on selected lichen species: Parmelia chlorochroa, Collema polycarpon and Lecanora muralis, The Bryologist 87, 297–301.

    Article  Google Scholar 

  26. Finckh, B.F. and Kunert, K.J. (1985) Vitamin C and E: an antioxidative system against herbicide-induced lipid peroxidation in higher plants, Journal of Agriculture and Food Chemistry 33, 574–577.

    Article  CAS  Google Scholar 

  27. Foyer, C. and Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta 133, 21–25.

    Article  Google Scholar 

  28. Galiazzo, F., Carri, M.T., Ciriolo, M.R., and Rotilo, G. (1994) Superoxyde dismutases in Saccharomyces cerevisiae, in G. Winkelmann and D.R. Winge (eds.), Metal ions in fungi, Marcel Dekker Inc., New York, pp. 361–390.

    Google Scholar 

  29. Gallego, S.M., Benavides, M.P., and Tomaro, M.L. (1996) Effect of heavy metal ion excess on sunflower leaves evidence for involvement of oxidative stress, Plant Science 121, 151–159.

    Article  CAS  Google Scholar 

  30. Garty, J. (1993) Lichens as biomonitors for heavy metal pollution, in B. Markert (ed.), Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment, VCH, Weinheim, pp. 193–263.

    Google Scholar 

  31. Garty, J. (2000) Trace metals, other chemical elements and lichen phisiology: research in the nineties, in B. Markert and K. Friese (eds.), Trace elements-Their distribution and effects in the environment, Elsevier Science, pp. 277–322.

    Google Scholar 

  32. Garty, J. (2001) Biomonitoring Heavy Metal Pollution with Lichens, in I. Kranner, R.P Beckett, and A. Varma (eds.), Protocols in Lichenology, Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring, Springer, Berlin-Heidelberg (in press).

    Google Scholar 

  33. Garty, J., Karnieli, A., Wolfson, R., Kunin, P., and Garty-Spitz, R. (1997) Spectral reflectance and integrity of cell membranes and chlorophyll relative to the concentration of airborne mineral elements in a lichen, Physiologia Plantarum 101, 257–264.

    Article  CAS  Google Scholar 

  34. Gilbert, H.F. (1995) Thiol-Disulfide exchange equilibria and disulfide bond stability, Methods in Enzymology 251, 8–28.

    Article  CAS  Google Scholar 

  35. Gonzalez, C.M. and Pignata, M.L. (1994) The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulfur and heavy metals in a transplanted lichen, Chemistry and Ecology 9, 105–113.

    Article  CAS  Google Scholar 

  36. González, C.M. and Pignata, M.L. (1997) Chemical response of the lichen Punctelia subrudecta (Nyl.) Krog transplanted close to a power station in an urban-industrial environment, Environmental Pollution 97, 195–203.

    Article  Google Scholar 

  37. González, C.M. and Pignata, M.L. (1999) Effect of pollutants emitted by different urban-industrial sources on the chemical response of the transplanted Ramalina ecklonii (Spreng.) Mey. and Flot., Toxicological and Environmental Chemistry 69, 61–73.

    Article  Google Scholar 

  38. González, C.M. and Pignata, M.L. (2000) Chemical response of transplanted lichen Canomaculina pilosa to different emission sources of air pollutants, Environmental Pollution 110, 235–242.

    Article  Google Scholar 

  39. González, C.M., Casanovas, S.S., and Pignata, M.L. (1996) Biomonitoring of air pollution from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Córdoba, Argentina, Environmental Pollution 91, 269–277.

    Article  Google Scholar 

  40. Grace, B., Gillpsie, T.J., and Puckett, K.J. (1985) Uptake of gaseous sulfure dioxide by the lichen Cladonia rangiferina, Canadian Journal of Botany 63, 707–715.

    Google Scholar 

  41. Halliwell, B. (1984) Chloroplast Metabolism, Clarendon Press, Oxford.

    Google Scholar 

  42. Halliwell, B. (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts, Chemistry and Physics of Lipids 44, 327–340.

    Article  CAS  Google Scholar 

  43. Halliwell, B. and Gutteridge, J.M.C. (1989) Free radicals in biology and medicine, Clarendon Press, Oxford.

    Google Scholar 

  44. Handy, R.D. and Depledge, H. (1999) Physiological responses; their measurement and use as environmental biomarkers in ecotoxicology, Ecotoxicology 8, 329–349.

    Article  CAS  Google Scholar 

  45. Hidalgo, M.E., Fernandez, E., Quilhot, W., and Lissi, E. (1994) Antioxidant activity of depsides and depsidones, Phytochemistry 37, 1585–1587.

    Article  CAS  Google Scholar 

  46. Holopainen, T.H. (1984) Cellular injuries in epiphytic lichens transplanted to air polluted areas, Nordic Journal of Botany 4, 393–408.

    Article  CAS  Google Scholar 

  47. Howlett, N. and Avery, S. (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation, Applied and Environmental MicrobiologyApplied and Environmental Microbiology, 2971–2976.

    Google Scholar 

  48. Huneck, S., and Yoshimura, I. (1996) Identification of Lichen Substances, Springer, Berlin.

    Book  Google Scholar 

  49. Koeman, J.H., Köhler-Günther, A., Kurelec, B., Riviére, J.L., Versteeg, D., and Walker, C.H. (1993) Applications and objectives of biomarkers research, in D.B. Peakall and L.R. Shugart (eds.), Biomarkers Research and Application in the Assessment of Environmental Health, NATO Advanced Sciences Institutes Series, Springer Verlag, Berlin, Vol. H68, pp. 1–13.

    Google Scholar 

  50. Kong, F.X., HU, W., Chao, S.Y., Sang, W.L., and Wang, L.S. (1999) Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2, Environmental and Experimental Botany 42, 201–209.

    Article  CAS  Google Scholar 

  51. Kranner, I. and Grill, D. (1997) Desiccation of lichens: Changes in the glutathione status, in W.J. Cram, L.J. DeKok, I. Stulen, C. Brunold and H. Rennenberg (eds.), Sulfur metabolism in higher plants. Fundamental molecular, ecophysiological and agricultural aspects, Backhuys Publishers, Leiden, The Netherlands, pp. 253–255.

    Google Scholar 

  52. Kranner, I. and Lutzoni, F (1999) Evolutionary consequences of transition to a lichen symbiotic state and physiological adaptation to oxidative damage associated with poikilohydry, in H.R. Lerner (ed.). Plant Response to Environmental Stress: From Phytohormones to Genome Reorganization, M. Dekker Inc., New York, pp. 591–628.

    Google Scholar 

  53. Lagadic, L., Caquet, T., and Amiard, J.C. (1997) Biomarqueurs en écotoxicologie principes et définitions, in L. Lagadic, T. Caquet, J.C. Amiard and F. Ramade (eds.), Biomarqueurs en écotoxicologie aspects fondamentaux, Masson, Paris, pp. 1–10.

    Google Scholar 

  54. Lamoureux, G.L. and Rusness, D.G. (1993) Glutathione in the metabolism and detoxification of xenobiotics in plants, in L.J. DeKok, I. Stulen, H. Rennenberg, C. Brunold and W.E. Rauser (eds.), Sulfur nutrition and assimilation in higher plants, SPB Academic Publishing, The Hague, pp. 221–237.

    Google Scholar 

  55. Levin, A.G. and Pignata, M.L. (1995) Ramalina ecklonii (Spreng,) Mey. and Flot. as bioindicator of atmospheric pollution in Argentina, Canadian Journal of Botany 73, 1196–1202.

    Article  Google Scholar 

  56. Levine, A. (1999) Oxidative stress as a regulator of environmental responses in plants, in H.R. Lerner (ed.), Plant Response to Environmental Stress: From Phytohormones to Genome Reorganization, M. Dekker Inc., New York, pp. 247–264.

    Google Scholar 

  57. Miller, P.R. (1989) Biomarkers for defining air pollution effects in western coniferous forests, in National Research Council (ed.), Biologic markers of air pollution stress and damage in forests, Committee on biological markers of air pollution damage in trees, National Academy Press, Washington D.C., pp. 111–188.

    Google Scholar 

  58. Minibayeva, F. and Beckett, R.P. (2001) High rates of extracellular superoxide production in bryophytes and lichens, and an oxidative burst in response to rehydration following desiccation, New Phylologist (submitted).

    Google Scholar 

  59. Modenesi, P. (1993) An SEM study of injury symptoms in Parmotrema reticulatum treated with paraquat or growing in sulphur dioxide-polluted air, Lichenologist 25, 423–433.

    Google Scholar 

  60. Monod, G. (1997) Induction du cytochrome P450A1, in L. Lagadic, T. Caquet, J.C. Amiard and F. Ramade (eds.), Biomarqueurs en écotoxicologie aspects fondamentaux, Masson, Paris, pp. 33–52.

    Google Scholar 

  61. Muir, M.V. and McCune, B. (1987) Index construction for foliar symptoms of air pollution injury, Phytopathology 71, 558–565.

    Google Scholar 

  62. NAS/NCR (1989) Biologic markers in reproductive toxicology, National Academic Press, Washington.

    Google Scholar 

  63. National Research Council (Washington DC) (1987) Biological markers in environmental health research, Environmental Health Perspectives 74, 3–9.

    Google Scholar 

  64. Nieboer, E., Richardson, D.H.S. and Tomassini, F.D. (1978) Mineral uptake and release by lichens an overview, The Bryologisl 81, 226–246.

    Article  CAS  Google Scholar 

  65. Niewiadomska, E. and Miszalski, Z. (1997) Determination of some oxidative stress parameters in variegated leaves of Chlorophytum comosum (Thunb.) Bak, Acta Physiologiae Plantarum 19, 33–39.

    Article  CAS  Google Scholar 

  66. Pearson, L.C. and Henricksson, E. (1981) Air pollution damage to cell membranes in lichens II Laboratory experiments, The Bryologist 84, 515–520.

    Article  CAS  Google Scholar 

  67. Pearson, L.C. and Rogers, G.A. (1982) Air pollution damage to cell membranes in lichens. III. Field experiments, Phyton 22, 329–337.

    CAS  Google Scholar 

  68. Prasad, K.V.S.K., Paradha Saradhi, P., and Sharmila, P. (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea, Environmental and Experimental Botany 42 (1), 1–10.

    Article  CAS  Google Scholar 

  69. Rauser, W.E. (2000) The role of thiols in plants under metal stress, in C. Brunold, H. Rennenberg, L.J. deKok, I. Stulen and J.C. Davidian (eds.), Sulphur nutrition and sulphur assimilation in higher plants. Molecular, biochemical and physiological aspects, Paul Haupt, Bern, pp. 169–183.

    Google Scholar 

  70. Rice-Evans, C.A., Miller, N.J., and Paganga, G. (1996) Structure-antioxidant activity relationship of flavonoids and phenolic acids, Free Radical Biology and Medicine 20, 933–956.

    Article  CAS  Google Scholar 

  71. Sandermann, H., Ernst, D., Heller, W., and Langebartels, C. (1998) Ozone: an abiotic elicitor of plant defence reactions, Trends in Plant Science 3, 47–50.

    Article  Google Scholar 

  72. Sarret, G., Manceau, A., Cuny, D., Van Haluwyn, C., Deruelle, S., Hazemann, J.L., Soldo, Y., Eybert-Berard, L., and Menthonnex, J.J. (1998) Mechanisms of lichen resistance to metallic pollution, Environmental Science and Technology 32, 3325–3330.

    Article  CAS  Google Scholar 

  73. Schlee, D., Kandzia, R., Tintemann, H., and Türk, R. (1995) Activity of superoxide dismutase and malondialdehyde content in lichens along an altitude profile, Phyton 35, 233–242.

    CAS  Google Scholar 

  74. Silberstein, L., Siegel, B.Z., Siegel, S.M., Mukhtar, A., and Galun, M. (1996) Comparative studies on Xanthoria parietina a pollution-resistant lichen and Ramalina duriaei a sensitive species. II. Evaluation of possible air pollution-protection mechanisms, Lichenologist, 28, 367–383.

    Google Scholar 

  75. Smirnoff, N. (1993) The role of active oxygen in the response of plants to water deficit and desiccation, New Phytologist 125, 27–58.

    Article  CAS  Google Scholar 

  76. Smirnoff, N. (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule, Current Opinion in Plant Biology 3, 229–235.

    CAS  Google Scholar 

  77. Tarhanen, S., Holopainen, T., Poikolainen, J., and Oksanen, J. (1996) Effect of industrial emissions on membrane permeability of epiphytic lichens in northern Finland and the Kola peninsula industrial areas, Water, Air and Soil Pollution 88, 189–201.

    CAS  Google Scholar 

  78. Tarhanen, S., Metsärinne, S., Holopainen, T., and Oksanen, J. (1999) Membrane permeability response of lichen Bryoria fuscescens to wet-deposited heavy metals and acid rain, Environmental Pollution 104, 121–129.

    Article  CAS  Google Scholar 

  79. Valenzuela, A. (1991) The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress, Life Sciences 48, 301–309.

    Article  CAS  Google Scholar 

  80. Van Gestel, C.A.M and Van Brumelen, T.C. (1996) Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms, Ecotoxicology 5, 217–225.

    Article  Google Scholar 

  81. Vangronsveld, J., Mench, M., Mocquot, B., and Clijsters, H. (1998) Biomarqueurs d’exposition des végétaux terrestres aux polluants application à la pollution par les métaux, in L. Lagadic, T. Caquet, J.C. Amiard and F. Ramade (eds.), Utilisation des biomarqueurs pour la surveillance de la qualité de l’environnement, Lavoisier Technique et Documentation, Paris, pp. 165–179.

    Google Scholar 

  82. Vangronsveld, J., Mocquot, B., Mench, M., and Clijsters, H. (1997) Biomarqueurs du stress oxydant chez les végétaux, in L. Lagadic, T. Caquet, J.C. Amiard and F. Ramade (eds.), Biomarqueurs en écotoxicologie aspects fondamentaux, Masson, Paris, pp. 165–184.

    Google Scholar 

  83. Velikova, V., Yordanova, I., and Edrevab, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants, Protective role of exogenous polyamines, Plant Sciences 151, 59–66.

    Article  CAS  Google Scholar 

  84. Weinstein, D.A. and Birk, E.M. (1989) The effects of chemicals on the structure of terrestrial ecosystems: Mechanisms and patterns of change, in S.A. Levin., M.A. Harwell, J.R. Kelly and K.D. Kimball (eds.), Ecotoxicology: Problems and approaches, Springer, New York, pp. 76–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cuny, D., Pignata, M.L., Kranner, I., Beckett, R. (2002). Biomarkers of Pollution-Induced Oxidative Stress and Membrane Damage in Lichens. In: Nimis, P.L., Scheidegger, C., Wolseley, P.A. (eds) Monitoring with Lichens — Monitoring Lichens. NATO Science Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0423-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0423-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0430-8

  • Online ISBN: 978-94-010-0423-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics