Skip to main content

Cooling and Packaging of RF Components

  • Chapter
Microwave Superconductivity

Part of the book series: NATO Science Series ((NSSE,volume 375))

Abstract

The ideal cryogenic refrigerator (“cryocooler” or “cooler”) for cooling superconducting RF components should have a cooling power of a few Watts at the desired operating temperature, with an input power of also only a few Watts. Furthermore, it would be nice if it had infinite operating lifetime and costs only a few dollars. More wishes can be made, but it is obviously clear that such an ideal cooler, unfortunately, does not exist. Therefore, in the design of the complete system, a trade-off has to be made to compromise these wishes or requirements. In this trade-off process, device design and cryopackaging design have to interact. For example, a lower operating temperature may be desirable from the point of view of device performance while a lower temperature will necessitate a cooler that is bigger, heavier and more expensive. In this chapter, the cryopackaging aspects are considered. The main questions to be answered are:

  • How do available coolers work?

  • What are trends in cooling

  • What are the important aspects in packaging?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ter Brake, H.J.M. (1999) Cryogenic systems for superconducting devices, in H. Weinstock (ed.), Kluwer Academic Publ. Dordrecht.

    Google Scholar 

  2. Callen, H.B. (1985) Thermodynamics and an Introduction to Thermostatistics, John Wiley & Sons, New York.

    MATH  Google Scholar 

  3. Finn, C.P.B. (1986) Thermal Physics, Routledge, London.

    Google Scholar 

  4. Walker, G. (1983) Cryocoolers, part 1: Fundamentals, Plenum Press, New York.

    Google Scholar 

  5. Sheahen, T.P. (1994) Introduction to high-temperature superconductivity, Plenum Press. New York.

    Google Scholar 

  6. Strobridge. T.R. (1974) Cryogenic Refrigerators — An updated Survey. National Bureau of Standards Technical Note 655 (Supt. Documents, U.S. Govt. Printing Off.).

    Google Scholar 

  7. Bruning, J., Torrison, R., Radebaugh, R. and Nisenoff, M. (2000) The 1999 cryogenic refrigeration survey, to be published in Advancesin Cryogenic Engineering 45.

    Google Scholar 

  8. Ter Brake, H.J.M., Aarnink, W.A.M., Van den Bosch, P.J., Hilgenkamp, J.W.M., Flokstra, J. and Rogalla, H. (1997) Temperature dependence of the effective sensing area of high-Tc dc SQUIDs, Superconductor Science and Technology 10, 512–515.

    Google Scholar 

  9. Hein, M. RF properties of superconductors, this volume.

    Google Scholar 

  10. Workshop on “Militaryand Commercial Applications of Low Cost Cryocoolers” (M-CALC), San Diego, January 1996 and January 1998.

    Google Scholar 

  11. Workshop on “Cellular Base Station” at the 10th International Cryocooler Conference, Monterey, May 26th 1998.

    Google Scholar 

  12. Rijpma, A.P., Ter Brake, H.J.M., et al. (2000) Cryogenic aspects of a fetal heart monitor based on high-T c , SQUIDs, to be published in Advances in Cryogenic Engineering 45.

    Google Scholar 

  13. Loung, V., O’Baid and Harper, S. (1997) Path to low cost and high reliability Stirling coolers, in R.G. Ross. Jr. (ed.), Cryocoolers 9, Plenum Press. New York, pp. 97–108.

    Chapter  Google Scholar 

  14. Private communication May 1997 Fokker Space Leiden, The Netherlands.

    Google Scholar 

  15. Klein, N. (1996) HTS-shielded dielectric resonators for oscillators and filters, Low Power Cryocoolers, Bad Honnef, Germany 3–5 June 1996.

    Google Scholar 

  16. Walker, G. (1983) Cryocoolers, part 2: Applications, Plenum Press, New York.

    Google Scholar 

  17. Walker, G. (1989) Miniature Refrigerators for Cryogenic Sensors and Cold Electronics, Clarendon Press, Oxford.

    Book  Google Scholar 

  18. Longsworth, R.C., Boiarski, M.J. and Klusmier, L.A. (1995) 80 K Closed-cycle throttle refrigerator, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 537–541.

    Google Scholar 

  19. Missimer, D.J. (1994) Auto-Refrigerating Cascade (ARC) Systems — an overview, Tenth Intersociety Cryogenic Symposium, AIChE Spring National Meeting, March 1994.

    Google Scholar 

  20. Radebaugh, R. (1995) Recent developments in cryocoolers, in Proc. 19 th International Congress of Refrigeration, DenHaag, pp. 973–989.

    Google Scholar 

  21. Alfeev, V.N., Brodyanski, V.M., Yogadin, V.M., Nikolsky, V.A, and Ivantsov, A.V. (1973) Refrigerant for a cryogenic throttling unit, UK patent 1,336,892.

    Google Scholar 

  22. Kleemenko, A.P. (1960) One flow cascade cycle (in scheme of natural gas liquefaction and separation, in Proc. 10 th Int. Congr. of Refr., Copenhagen 1959, Pergamon Pres, pp. 34–39.

    Google Scholar 

  23. Little, W.A. and Sapozhnikov, I. (1997) Low cost cryocoolers for cryoelectronics, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 509–513.

    Chapter  Google Scholar 

  24. Private communication M. Nisenoff, September 1999.

    Google Scholar 

  25. Walker, G. and Bingham E.R. (1994) Low-Capacity Cryogenic Refrigeration, Clarendon Press, Oxford.

    Google Scholar 

  26. McMahon, H.O (1960) Recent developments in gas cryogenics, Cryogenics 1, 65–70.

    Article  Google Scholar 

  27. Gifford, W.E. and Mc Mahon, H.O. (1959) A low temperature heat pump, in Proceedings. 10th International Congress of. Refrigeration. Vol. 1 (Copenhagen 1959).

    Google Scholar 

  28. Radebaugh, R. (1997) Advances in cryocoolers, in T. Haruyarna, T. Mitsui and K. Yamafuji (eds.), Proceedings 16th International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 33–44.

    Google Scholar 

  29. Gifford, W.E. and Longsworth, R.C. (1963) Pulse-tube refrigeration, ASME paper No. 63-WA-290 presented at Winter Annual Meeting of the American Society of Mechanical Engineers, Philadelphia, Pennsylvania (Nov. 17–22, 1963).

    Google Scholar 

  30. Mikulin, E.I., Tarasov, A.A. and Shkrebyonock (1984) Low-temperature expansion pulse tubes, Advances in Cryogenic Engineering 29, Plenum Press, New York, pp. 629.

    Chapter  Google Scholar 

  31. Radebaugh, R., Zimmerman, J., Smith, D.R. and Louie, B. (1986) A comparison of three types of pulse tube refrigerators: new methods for reaching 60 K, in R.W. Fast (ed.), Advances in Cryogenic Engineering 31, Plenum Press, New York, pp. 779–789.

    Chapter  Google Scholar 

  32. Zhu, S., Wu, P. and Chen, Z. (1990) Double inlet pulse tube refrigerators: an important improvement, Cryogenics 30, pp. 514.

    Article  Google Scholar 

  33. Chan, C.K., Jaco, C.B., et al. (1993) Miniature pulse tube cooler, in Proceedings 7 th International Cryocooler Conference, 17–19 November 1992, Santa Fe, pp. 113–124.

    Google Scholar 

  34. Duband, L., Charles, I., Ravex, A., Miquet, L. and Jewell, C. (1999) Experimental results on inertance and permanent flow in pulse tube coolers, in R.G. Ross, Jr. (ed.), Cryocoolers 10, Plenum Press, New York, pp. 281–290.

    Google Scholar 

  35. Kotsubo, V., Huang, P. and Nast, T.C. (1999) Observation of DC flows in a doubleinlet pulse tube, in R.G. Ross, Jr. (ed.), Cryocoolers 10, Plenum Press, New York, pp. 299–305.

    Google Scholar 

  36. Wang, C., Thummes, G. and Heiden, C. (1998) Control of DC gas flow in a single-stage double-inlet pulse tube cooler, Cryogenics 38, 843–847.

    Article  Google Scholar 

  37. Thummes, G., Schreiber, M., Landgraf, R. and Heiden, C. (1997), Convective heat losses in pulse tube coolers: effectof pulse tube inclination, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 393–402.

    Chapter  Google Scholar 

  38. Thummes, G., Landgraf, R., Mück, M., Klundt, K. and Heiden, C. (1997) Operation of a high-Tc, SQUID gradiometer by use of a pulse tube refrigerator, in T. Haruyama, T. Mitsui and K. Yamafuji (eds.) Proceedings 16 th International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 283–286.

    Chapter  Google Scholar 

  39. Saez, S. et al. (1997) Progress towards a hand portable pulse tube refrigerator forhigh Tc, SQUID operation, in H. Koch and S. Knappe (eds.), Extended abstracts of 6th International Supercond. Electronics Conf., Berlin, 25–28 June 1997, PTB Braunschweig, pp. 432–434.

    Google Scholar 

  40. Nast, T., Champagne, P. and Kotsubo, V. (1998) Development of a low-cost unlimited-life pulse-tube cryocooler for commercial applications, in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York, pp. 2047–2053.

    Google Scholar 

  41. Radebaugh R. (1983) Fundamentals of alternate cooling, in G. Walker, Cryocoolers part 2: Applications, Plenum Press, New York, pp. 129–175.

    Google Scholar 

  42. Mahan, G.D. (1994) Thermionic refrigeration, Journal of Applied Physics 76, 4362–4366.

    Article  Google Scholar 

  43. Zhou, R., Dagel, D. and Lo, Y.H. (1999) Multilayer thermionic cooler with a varying current density, Applied Physics letters 74, 1767–1769.

    Article  Google Scholar 

  44. Mahan, G.D. and Woods, L.M. (1998) Multilayer thermionic refrigeration, Physical Review Letters 80, 4016–4019.

    Article  Google Scholar 

  45. Pringsheim, P. (1929) Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung, Zeitung der Physik 57, 739–746.

    Article  Google Scholar 

  46. Epstein, R.I., Buchwald, M.I., Edwards, B.C., Gosnell, T.R. and Mungan, C.E. (1995) Observation of laser-induced fluorescent cooling of a solid, Nature 377, 500–502.

    Article  Google Scholar 

  47. Edwards, B.E., Anderson, J.E., Epstein, R.I., Mills, G.L. and Mord, A.J. (1999) Demonstration of a solid-state optical cooler; A new approach to cryogenic refrigeration, Journal of Applied Physics 86, 6489–6493 (48 K step reported, 56 K was claimed in private communication with R.I. Epstein, November 3rd 1999).

    Article  Google Scholar 

  48. Epstein, R.I., Edwards, B.C., Mungan, C.E. et al. (1997) The Los Alamos solid-state optical refrigerator, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 681–686.

    Chapter  Google Scholar 

  49. Workshop on Cryogenic packaging of High Temperature Superconducting (HTS) Electronic Devices, Boston USA, 16 October 1994, (1995) Cryogenics 35, 405–406.

    Google Scholar 

  50. Jones, B.G. (1995) Development for space use of BAe’s improved single-stage Stirling cycle cooler for applications in the range 50–80 K, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 1–11.

    Google Scholar 

  51. Radebaugh, R. (1990) A review of pulse tube refrigeration, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1191–1205.

    Google Scholar 

  52. Davey, G. (1990) Review of the Oxford cryocooler, in R.W. Fast (ed.), Advances in Cryogenic Engineering 35, Plenum Press, New York, pp. 1423–1430.

    Google Scholar 

  53. Walker, G. and Bingham, E.R (1990) Micro and nanno cryocoolers: speculation on future development, in Proceedings of the 6 th International Cryocooler Conference, Plymouth, Mass., October 1990, pp.363–375.

    Google Scholar 

  54. Crete, D., Cabanel, R. and Friederich, A. (1995) Refroidisseur à gaz pulsé, European patent publication 0 672 873 A1.

    Google Scholar 

  55. Bowman, L., Berchowitz, D.M. and Urieli, I. (1994) Microminiature Stirling cycle cryocoolers and engines, US patent 5,457,956.

    Google Scholar 

  56. Burger, J.F. et al. (1997) Microcooling: study on the application of micromechanical techniques, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 687–696.

    Chapter  Google Scholar 

  57. Burger, J.F. et al. (1999) Thermodynamic considerations on a microminiature sorption cooler, in R.G. Ross, Jr. (ed.), Cryocoolers 10, Plenum Press, New York, pp. 553–563.

    Google Scholar 

  58. Jansman, A.B.M. (1999) High-Tc, dc SQUIDs for use in a background field, Ph.D. thesis University of Twente, Enschede.

    Google Scholar 

  59. Prusseit, W. (2000) Protective coatings for Yba2Cu3O7-thin film devices, in X. Obradors, et al. (eds.) Applied Superconductivity 1999 2, IOP London, pp. 69–72.

    Google Scholar 

  60. Ter Brake, H.J.M., Karunanithi, R., Holland, H.J., Flokstra, J. et al. (1997) A seven-channel high-T c , SQUID-based heart scanner, Measurement Science and technology 8, 927–931.

    Article  Google Scholar 

  61. Scharen, M.J., Chase, D.R., Ho, A.M., O’Baid, A, et al. (1997) Filter subsystems for wireless communications, IEEE Transactions on Applied Superconductivity 7, 3744–3749.

    Article  Google Scholar 

  62. Roth, A. (1990) Vacuum Technology, Elsevier, Amsterdam.

    Google Scholar 

  63. Burger, J.F., Holland, H.J., Van Egmond, H. et al. (1999) Fast gas-gap heat switch for a microcooler, in R.G. Ross, Jr. (ed.), Cryocoolers 10, Plenum Press, New York, pp. 565–574.

    Google Scholar 

  64. Della Porta, P. (1996) Gas problem and gettering in sealed-off vacuum devices, Vacuum 47, 771–777.

    Article  Google Scholar 

  65. Lehmann, G., Ramsden, J., Sochor, J. and Beeck, G. (1998) Cryopackaging for real world products, in P. Kittel (ed.), Adv. in Cryog. Eng. 43, Plenum Press, New York, pp. 865–870.

    Google Scholar 

  66. Boffito, C., Ferrario, B., Rosai, L. and Doni, F. (1987) Gettering in cryogenic applications, Journal of Vacuum Science Technology A5, 3442–3445.

    Google Scholar 

  67. Waterman, N.A. and Ashby M.F. (1997) Materials selector, Chapman&Hall, London.

    Google Scholar 

  68. Reed, R.P. and Clark, A.F. (1983) Materials at Low Temperatures, Am. Soc. of Metals.

    Google Scholar 

  69. Reed, R.P. and Golda, M. (1994) Cryogenic properties of unidirectional composites, Cryogenics 34, 909–928.

    Article  Google Scholar 

  70. Schutz, J.B. (1998) Properties of composite materials for cryogenic applications, Cryogenics 38, 3–12.

    Article  Google Scholar 

  71. Reed, R.P. and Golda, M. (1997) Cryogenic composite supports: a review of strap and strut properties, Cryogenics 37, 233–250.

    Article  Google Scholar 

  72. Wedenig, R, Knoblauch Ch. and Niinikoski, T.O. (1998) RF transmission line for cryogenic applications, Cryogenics 38, 239–245.

    Article  Google Scholar 

  73. Kubota, H. and Takeuchi, H. (1999) Low thermal leakage coaxial cable, IEEE Transactions on Applied Superconductivity 9, 3117–3120.

    Article  Google Scholar 

  74. Tighe, T.S., Akerling, G. and Smith, A.D. (1999) Cryogenic packaging for multi-GHz electronics, IEEE Transactions on Applied Superconductivity 9, 3173–3176.

    Article  Google Scholar 

  75. Ter Brake, H.J.M. and Flokstra, J. (1988) Computer aided cryostat design: recent developments R.G. Scurlock and C.A. Bailey (eds.), Proceedings 12th International Cryogenic Engineering Conference, Butterworth, UK, pp. 88–92.

    Google Scholar 

  76. Barron, R. (1966) Cryogenic Systems, McGraw-Hill Book Company, New York.

    Google Scholar 

  77. Hohmann, R., Lucia, M.L., Soltner, H., et al. (1997) Integration of HTS SQUIDs with portable cooling devices for the detection of materials defects in non-destructive evaluation, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 925–934.

    Chapter  Google Scholar 

  78. Longsworth, R.C. (1980) Servicable refrigerator system for small superconducting devices, in J.E. Zimmerman, D.B. Sullivan and S.E. Mc Carthy (eds.), Refrigeration for cryogenic sensors and electronic systems, Proc. NBS Boulder, Oct. 6–7 1980, pp. 82–92.

    Google Scholar 

  79. Kaiser, G., Thurk, M. and Seidel, P. (1996) Closed cycle cryocoolers with a phase-change system for the cooling of high-Tc, SQUIDs, in P. Kittel (ed.), Advances in Cryogenic Engineering 41, Plenum Press, New York, pp. 1247–1253.

    Chapter  Google Scholar 

  80. Bugby, D.C., Bettini, R.G., Stouffer, C.J..etal. (1997) Development of a 60 K thermal storage unit, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 747–764.

    Chapter  Google Scholar 

  81. Dunn, P.D. and Reay, D.A. (1982) Heat Pipes, Pergamon Press 3rd ed., Oxford.

    Google Scholar 

  82. Prenger, F.C., Hill, D.D..et al. (1997) Heat pipes for enhanced cooldown of cryogenic systems, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 831–839.

    Chapter  Google Scholar 

  83. Rosenfeld, J.H., Wolf, D.A. and Buchko, M.T. (1995) Emerging technologies for cryocooler interfaces, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 743–753.

    Google Scholar 

  84. Van den Bosch, P.J. (1996) Cryocooler-operated high-T c SQUID systemfor magnetocardiography in an unshielded environment, Ph.D. thesis University of Twente, Enschede.

    Google Scholar 

  85. Van den Bosch, P.J., Holland, H.J., Ter Brake, H.J.M. and Rogalla, H. (1995) Closed-cycle gas flow sytem for cooling of high-Tc dc SQUID magnetometers, Cryogenics 35, 109–116.

    Article  Google Scholar 

  86. Troell, J. and Heiden, C. (1997) Low noise gas flow cryosystem for cooling high-Tc, SQUID, in T. Haruyama, et al. (eds.), Proceedings 16 th International Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 453–456.

    Google Scholar 

  87. Kotsubo, V. and Black, R.D. (1996) Apparatus for cooling NMR coils, U.S. patent 5,508,613.

    Google Scholar 

  88. Van den Bosch, P.J., Ter Brake, H.J.M., Holland, H.J., De Boer, H.A., Verberne, J.F.C. and Rogalla, H. (1997) Cryogenic design of a high-T c , SQUID-based heart scanner cooled by small Stirling cryocoolers, Cryogenics 37, 139–151.

    Article  Google Scholar 

  89. Sullivan, D.B., Zimmerman, J.E. and Ives, J.T. (1980) Operation of a practical SQUID gradiometer in a low-power Stirling cryocooler, in J.E. Zimmerman, D.B. Sullivan, S.E. Mc Carthy (eds.), Proc. Conf. Refrigeration for Cryogenic Sensors and Electronic Systems, NBS Boulder, 6–7 October 1980, pp. 186–194.

    Google Scholar 

  90. Klundt, K., Lienerth, C., Thummes, G., Steinmeyer, E., et al. (1998) Use of a pulse tube refrigerator for cooling a HTS-antenna for magnetic resonance imaging, in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York, pp. 2085–2092.

    Google Scholar 

  91. Gerster, J., Kaiser, G., Reißig Thürk, M. and Seidel, P. (1998) Low noise cold head of a four-valve pulse tube refrigerator, in P. Kittel (ed.), Advances in Cryogenic Engineering 43, Plenum Press, New York, pp. 2077–2084.

    Google Scholar 

  92. Wade, L.A. (1992) An overview of the development of sorption refrigeration, in R.W. Fast (ed.), Advances in Cryogenic Engineering 37, Plenum Press, New York, pp. 1095–1106.

    Chapter  Google Scholar 

  93. Zimmerman, J.E. (1980) Cryogenics for SQUIDs, in H.D. Hahlbohrn and H. Lubbig (eds.) Proceedings of the second International Conference on Superconducting Quantum Devices, Springer-Verlag, Berlin, pp. 423–443.

    Google Scholar 

  94. Kazami, K., Takada, Y., Fujimoto, S., et al.. (1994) A Drung-type magnetometer mounted on a GM cryocooler, Superconductor Science & Technology 7, 256–259

    Article  Google Scholar 

  95. Kazami, K., Takada, Y., Yoshida, T., Ogata, H. and Kado, H. (1995) Cooling of SQUIDs using a Gifford-McMahon cryocooler containing magnetic regenerative material to measure biomagnetism, Cryogenics 35 143–148.

    Article  Google Scholar 

  96. Sata, K., Fujimoto, S., Fukui, N., Haraguchi, E., Kido, T., Nishiguchi, K. and Kang, Y.-M. (1997) A 61-channel SQUID systemfor MEG measurement cooled by a GM/JT cryocooler, IEEE Transactions on Applied Superconductivity 7, 2526–2529.

    Article  Google Scholar 

  97. Sata, K., Fujimoto, S., Fukui, N., Haraguchi, E., Kido, T., Nishiguchi, K. and Kang, Y-M. (1997) Development of SQUID based systems cooledby GM/JT cryocoolers, in T. Haruyama, et al. (eds.), Proceedings 16 th Int. Cryogenic Engineering Conference, Kitakyushu, Japan, 20–24 May 1996, Elsevier Science, New York, pp. 1173–1176.

    Google Scholar 

  98. Wu, Y.A. (1994) Active vibration control algorithm for cryocooler, in P. Kittel (ed.), Advances in Cryogenic Engineering 39, Plenum Press, New York, pp. 1271–1280.

    Chapter  Google Scholar 

  99. Collins, S.A., Paduano, J.D. and Von Flotow, A.H. (1995) Active multi-axis vibration cancellation for split-Stirling cryocoolers, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 437–448.

    Google Scholar 

  100. Mon, G.R., Smedley, G.T., Johnson, D.L. and Ross Jr., R.G. (1995) Vibration characteristics of Stirling cycle cryocoolers for space application, in R.G. Ross, Jr. (ed.), Cryocoolers 8, Plenum Press, New York, pp. 197–208.

    Google Scholar 

  101. Kieffer, M., Wu, A. and Champion S. (1997) Summary and results of Hughes improved standard spacecraft cryocooler vibration suppression experiment, in R.G. Ross, Jr. (ed.), Cryocoolers 9, Plenum Press, New York, pp. 705–710.

    Chapter  Google Scholar 

  102. Rijpma, A.P., Verberne, J.F.C., Witbreuk, E.H.R., Bruins, P.C. and Ter Brake, H.J.M. (1998) Adaptive periodic disturbance cancellation in a set-up of two cryocoolers, Journal of Sound and Vibration 217, 419–434.

    Article  Google Scholar 

  103. Clappier, R.R. and Kline-Schoder (1994) Precision temperature control of Stirling cryocoolers, in P. Kittel (ed.), Adv. in Cryog. Eng. 39, Plenum Press, New York, pp. 1177–1184.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ter Brake, H.J.M. (2001). Cooling and Packaging of RF Components. In: Weinstock, H., Nisenoff, M. (eds) Microwave Superconductivity. NATO Science Series, vol 375. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0450-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0450-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0446-9

  • Online ISBN: 978-94-010-0450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics