Skip to main content

Computing finite-time singularities in interfacial flows

  • Chapter
Modern Methods in Scientific Computing and Applications

Part of the book series: NATO Science Series ((NAII,volume 75))

Abstract

Finite-time singularities occurring in mathematical models of free-surface flows indicate that important qualitative changes are taking place; for problems in solid and fluid mechanics this includes topological transitions—blow-up and pinch-off. For many problems, the dynamics leading to the formation of such singularities are described by self-similar solutions of the governing nonlinear partial differential equations. We present an analytical and numerical study of these similarity solutions and discuss their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. F. Ames, Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press, Boston, MA, 1992.

    MATH  Google Scholar 

  2. C. Bandle and H. Brunner, Blowup in diffusion equations: a survey, J. Comput Appl. Math. 97 (1–2) (1998), 3–22.

    MathSciNet  MATH  Google Scholar 

  3. G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  4. R. M. Beam and R. F. Warming, Alternating direction implicit methods for parabolic equations with a mixed derivative, SIAM J. Sci. Statist. Comput. 1 (1) (1980), 131–159.

    MathSciNet  MATH  Google Scholar 

  5. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978.

    MATH  Google Scholar 

  6. D. J. Benney, Long waves on liquid films, J. Math, and Phys. 45 (1966), 150–155.

    MathSciNet  MATH  Google Scholar 

  7. M. Berger and R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math. 41 (6) (1988), 841–863.

    MathSciNet  MATH  Google Scholar 

  8. A. J. Bernoff and A. L. Bertozzi, Singularities in a modified Kuramoto-Sivashinsky equation describing interface motion for phase transition, Phys. D 85 (3) (1995), 375–404.

    MathSciNet  MATH  Google Scholar 

  9. A. J. Bernoff, A. L. Bertozzi, and T. P. Witelski, Axisymmetric surface diffusion: Dynamics and stability of self-similar pinchoff, J. Statist Phys. 93 (3–4) (1998), 725–776.

    MathSciNet  MATH  Google Scholar 

  10. A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math. 56 (3) (1996), 681–714.

    MathSciNet  MATH  Google Scholar 

  11. A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc. 45 (6) (1998), 689–697.

    MathSciNet  MATH  Google Scholar 

  12. A. L. Bertozzi, M. P. Brenner, T. F. Dupont, and L. P. Kadanoff, Singularities and similarities in interface flows, in: Trends and Perspectives in Applied Mathematics, Springer, New York, 1994, 155–208.

    Google Scholar 

  13. A. L. Bertozzi, G. Grün, and T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearüy 14 (2001), 1569–1592.

    MATH  Google Scholar 

  14. A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a “porous media” cut-off of van der Waals interactions, Nonlinearüy 7 (6) (1994), 1535–1564.

    MathSciNet  MATH  Google Scholar 

  15. A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math. 49 (2) (1996), 85–123.

    MathSciNet  MATH  Google Scholar 

  16. A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math. 51 (6) (1998), 625–661.

    MathSciNet  Google Scholar 

  17. A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J. 49 (4) (2000), 1323–1366.

    MathSciNet  MATH  Google Scholar 

  18. J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett. 77 (8) (1996), 1536–1539.

    Google Scholar 

  19. J. P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys. 69 (1) (1987), 112–142.

    MathSciNet  MATH  Google Scholar 

  20. M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlineariy 12 (4) (1999), 1071–1098.

    MathSciNet  MATH  Google Scholar 

  21. M. P. Brenner, J. R. Lister, and H. A. Stone, Pinching threads, singularities and the number 0.0304..., Phys. Fluids 8 (11) (1996), 2827–2836.

    MathSciNet  MATH  Google Scholar 

  22. C. Budd, B. Dold, and A. Stuart, Blowup in a partial differential equation with conserved first integral, SIAM J. Appl. Math. 53 (3) (1993), 718–742.

    MathSciNet  MATH  Google Scholar 

  23. C. J. Budd, J. Chen, W. Huang, and R. D. Russell, Moving mesh methods with applications to blow-up problems for PDEs, in: Numerical Analysis 1995 (Dundee, 1995), Longman, Harlow, 1996, 1–18.

    Google Scholar 

  24. C. J. Budd, S. Chen, and R. D. Russell, New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations, J. Comput. Phys. 152 (2) (1999), 756–789.

    MathSciNet  MATH  Google Scholar 

  25. C. J. Budd, G. J. Collins, and V. A. Galaktionov, An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations, J. Comput. Appl. Math. 97 (1–2) (1998), 51–80.

    MathSciNet  MATH  Google Scholar 

  26. C. J. Budd and V. Galaktionov, Stability and spectra of blow-up in problems with quasi-linear gradient diffusivity, Proc. Roy. Soc. London Ser. A 454 (1977) (1998), 2371–2407.

    MathSciNet  Google Scholar 

  27. C. J. Budd, W. Huang, and R. D. Russell, Moving mesh methods for problems with blow-up, SIAM J. Sci. Comput. 17 (2) (1996), 305–327.

    MathSciNet  MATH  Google Scholar 

  28. J. P. Burelbach, S. G. Bankoff, and S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech. 195 (1988), 463–494.

    MATH  Google Scholar 

  29. R. E. Caflisch and G. C. Papanicolaou, eds., Singularities in Fluids, Plasmas and Optics, NATO ASI Ser. C 404, Kluwer, Dordrecht, 1993.

    Google Scholar 

  30. J. W. Cahn and J. E. Taylor, Surface motion by surface diffusion, Acta Metallica Materiala 42 (4) (1994), 1045–1063.

    Google Scholar 

  31. D. L. Chopp and J. A. Sethian, Flow under curvature: singularity formation, minimal surfaces, and geodesics, Experiment. Math. 2 (4) (1993), 235–255.

    MathSciNet  MATH  Google Scholar 

  32. B. D. Coleman, R. S. Falk, and M. Moakher, Stability of cylindrical bodies in the theory of surface diffusion, Phys. D 89 (1–2) (1995), 123–135.

    MathSciNet  MATH  Google Scholar 

  33. B. D. Coleman, R. S. Falk, and M. Moakher, Space-time finite element methods for surface diffusion with application to the theory of the stability of cylinders, SIAM J. Sci. Comput. 17 (6) (1996), 1434–1448.

    MathSciNet  MATH  Google Scholar 

  34. P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley, and S.-M. Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E (3) 47 (6) (1993), 4169–4181.

    MathSciNet  Google Scholar 

  35. S. D. Conte, Numerical solution of vibration problems in two space variables, Pacific J. Math. 7 (1957), 1535–1544.

    MathSciNet  MATH  Google Scholar 

  36. S. D. Conte and R. T. Dames, An alternating direction method for solving the bihar-monic equation., Math. Tables Aids Comput. 12 (1958), 198–205.

    MathSciNet  MATH  Google Scholar 

  37. S. D. Conte and R. T. Dames, On an alternating direction method for solving the plate problem with mixed boundary conditions, J. Assoc. Comput. Mach. 7 (1960), 264–273.

    MathSciNet  MATH  Google Scholar 

  38. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Modern Phys. 65 (3) (1993), 854–1112.

    Google Scholar 

  39. J. Douglas, Jr. and J. E. Gunn, A general formulation of alternating direction methods. I. Parabolic and hyperbolic problems, Numer. Math. 6 (1964), 428–453.

    MathSciNet  MATH  Google Scholar 

  40. J. Douglas, Jr. and H. H. Rachford, Jr., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc. 82 (1956), 421–439.

    MathSciNet  MATH  Google Scholar 

  41. P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Monogr. Mech. Appl. Math., Cambridge University Press, Cambridge, 1981.

    MATH  Google Scholar 

  42. L. Dresner, Applications of Lie’s Theory of Ordinary and Partial Differential Equations, Institute of Physics Publishing, Bristol, 1999.

    MATH  Google Scholar 

  43. T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, and S.-M. Zhou, Finite-time singularity formation in Hele-Shaw systems, Phys. Rev. E (3) 47 (6) (1993), 4182–4196.

    MathSciNet  Google Scholar 

  44. J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Modern Phys. 69 (3) (1997), 865–929.

    MATH  Google Scholar 

  45. B. I. Epureanu and H. S. Greenside, Fractal basins of attraction associated with a damped Newton’s method, SIAM Rev. 40 (1) (1998), 102–109 (electronic).

    MathSciNet  MATH  Google Scholar 

  46. T. Erneux and S. H. Davis, Nonlinear rupture of free films, Phys. Fluids A 5 (1993), 1117–1122.

    MATH  Google Scholar 

  47. L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (3) (1991), 635–681.

    MathSciNet  MATH  Google Scholar 

  48. S. Filippas and R. V. Kohn, Refined asymptotics for the blowup of ut - Δu = up, Comm. Pure Appl. Math. 45 (7) (1992), 821–869.

    MathSciNet  MATH  Google Scholar 

  49. V. A. Galaktionov and J. L. Vazquez, The problem of blow-up in nonlinear parabolic equations, in: Proc. Summer Course on PDEs, Pitman, 2000.

    Google Scholar 

  50. Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure A-ppl. Math. 38 (3) (1985), 297–319.

    MathSciNet  MATH  Google Scholar 

  51. Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 (1) (1987), 1–40.

    MathSciNet  MATH  Google Scholar 

  52. K. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, preprint, Duke University, 2001.

    Google Scholar 

  53. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.

    MATH  Google Scholar 

  54. K. Große-Brauckmann and K. Polthier, Compact constant mean curvature surfaces with low genus, Experiment. Math. 6 (1) (1997), 13–32.

    MathSciNet  MATH  Google Scholar 

  55. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski, Spinodal dewetting in liquid crystal and liquid metal films, Science 282 (5390) (1998), 916–919.

    Google Scholar 

  56. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1) (1990), 285–299.

    MathSciNet  MATH  Google Scholar 

  57. M. P. Ida and M. J. Miksis, Thin film rupture, Appl. Math. Lett 9 (3) (1996), 35–40.

    MathSciNet  MATH  Google Scholar 

  58. A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  59. L. P. Kadanoff, Singularities and blowups, Physics Today 50 (9) (1997), 11.

    Google Scholar 

  60. H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, published for the Tata Institute of Fundamental Research, Bombay, by Springer, Berlin-New York, 1987.

    Google Scholar 

  61. J. B. Keller and J. S. Lowengrub, Asymptotic and numerical results for blowing-up solutions to semilinear heat equations, in: Singularities in Fluids, Plasmas and Optics (R. E. Caflisch and G. C. Papanicolaou, eds.), NATO ASI Ser. C 404, Kluwer, Dordrecht, 1993, 111–129.

    Google Scholar 

  62. J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Appl. Math. Sci. 114, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  63. J. R. King, Emerging areas of mathematical modelling, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 358 (1765) (2000), 3–19.

    MathSciNet  MATH  Google Scholar 

  64. L. Kulinsky, J. D. Powers, and A. M. Glaeser, Morphological evolution of pre-perturbed pore channels in sapphire, Acta Materialia 44 (10) (1996), 4115–4130.

    Google Scholar 

  65. R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin film type equations, preprint, 2000, to appear in J. Differential Equations.

    Google Scholar 

  66. R. S. Laugesen and M. C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, preprint, 2000; http://xxx.lanl.gov.abs/math.AP/0003209.

    Google Scholar 

  67. R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Rational Mech. Anal. 154 (1) (2000), 3–51.

    MathSciNet  MATH  Google Scholar 

  68. R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, European J. Appl. Math. 11 (3) (2000), 293–351.

    MathSciNet  MATH  Google Scholar 

  69. H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (2) (1990), 262–288.

    MathSciNet  MATH  Google Scholar 

  70. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  71. G. I. Marchuk, Splitting and alternating direction methods, in: Handbook of Numerical Analysis (P. G. Ciarlet and J.-L. Lions, eds.), vol. I, North-Holland, Amsterdam, 1990, 197–462.

    Google Scholar 

  72. J. A. Moriarty and L. W. Schwartz, Dynamic considerations in the closing and opening of holes in thin liquid films, J. Colloid Interface Sci. 161 (1993), 335–342.

    Google Scholar 

  73. W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28 (3) (1957), 333–339.

    Google Scholar 

  74. W. W. Mullins, Mass transport at interfaces in single component systems, Metall. Trans. A 26 (1995), 1917–1929.

    Google Scholar 

  75. T. G. Myers, Thin films with high surface tension, SIAM Rev. 40 (3) (1998), 441–462.

    MathSciNet  MATH  Google Scholar 

  76. F. A. Nichols and W. W. Mullins, Morphological changes of a surface of revolution due to capillarity-induced surface diffusion, J. Appl. Phys. 36 (6) (1965), 1826–1835.

    Google Scholar 

  77. J. R. Ockendon and H. Ockendon, Viscous Flow, Cambridge University, Cambridge, 1995.

    MATH  Google Scholar 

  78. A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoing pressures, J. Colloid Interface Sci. 218 (1999), 152–166.

    Google Scholar 

  79. A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Modern Phys. ,69 (3) (1997), 931–980.

    Google Scholar 

  80. P. Plecháč and V. Šverák, On self-similar singular solutions of the complex Ginzburg-Landau equation, Comm. Pure Appl. Math. 54 (10) (2001), 1215–1242.

    MathSciNet  MATH  Google Scholar 

  81. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed., Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  82. M. C. Pugh and M. J. Shelley, Singularity formation in thin jets with surface tension, Comm. Pure Appl. Math. 51 (7) (1998), 733–795.

    MathSciNet  Google Scholar 

  83. C. Redon, F. Brochard-Wyart, and F. Rondelez, Dynamics of dewetting, Phys. Rev. Lett. 66 (6) (1991), 715–718.

    Google Scholar 

  84. G. Reiter, Dewetting of thin polymer-films, Phys. Rev. Lett. 68 (1) (1992), 75–78.

    MathSciNet  Google Scholar 

  85. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, de Gruyter, Berlin, 1995.

    MATH  Google Scholar 

  86. A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett. 81 (16) (1998), 3463–3466.

    Google Scholar 

  87. A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films under the influence of antagonistic short- and long-range forces, J. Chem. Phys. 110 (10) (1999), 4929–4936.

    Google Scholar 

  88. M. J. Shelley, R. E. Goldstein, and A. I. Pesci, Topological transitions in Hele-Shaw flow, in: Singularities in Fluids, Plasmas and Optics (R. E. Caflisch and G. C. Papanicolaou, eds.), NATO ASI Ser. C 404, Kluwer, Dordrecht, 1993, 167–188.

    Google Scholar 

  89. X. D. Shi, M. P. Brenner, and S. R. Nagel, A cascade of structure in a drop falling from a faucet, Science 265 (5169) (1994), 219–222.

    MathSciNet  MATH  Google Scholar 

  90. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., Texts Appl. Math. 12, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  91. B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  92. L. S. Tuckerman and D. Barkley, Bifurcation analysis for timesteppers, in: Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (Minneapolis, MN, 1997), Springer, New York, 2000, 453–466.

    Google Scholar 

  93. S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L. Swinney, Long-wavelength instability in surface-tension-driven Bénard convection, Phys. Rev. Lett. 75 (24) (1995), 4397–4400.

    Google Scholar 

  94. S. J. VanHook, M. F. Schatz, J. B. Swift, W. D. McCormick, and H. L. Swinney, Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech. 345 (1997), 45–78.

    MathSciNet  Google Scholar 

  95. D. Vaynblat, J. R. Lister, and T. P. Witelski, Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity, Phys. Fluids 13 (5) (2001), 1130–1140.

    Google Scholar 

  96. D. Vaynblat, J. R. Lister, and T. P. Witelski, Symmetry and self-similarity in rupture andpinchoff: A geometric bifurcation, European J. Appl. Math. 12 (3) (2001), 209–232.

    MathSciNet  MATH  Google Scholar 

  97. M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interface Sci. 90 (1982), 220.

    Google Scholar 

  98. T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids 11 (9) (1999), 2443–2445.

    MathSciNet  MATH  Google Scholar 

  99. T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Phys. D 147 (1–2) (2000), 155–176.

    MathSciNet  MATH  Google Scholar 

  100. T. P. Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, preprint, Duke University, 2001.

    Google Scholar 

  101. H. Wong, M. J. Miksis, P. W. Voorhees, and S. H. Davis, Universal pinch off of rods by capillarity-driven surface diffusion, Scripta Materialia 39 (1) (1998), 55–60.

    Google Scholar 

  102. R. Xie, A. Karim, J. Douglas, C. Han, and R. Weiss, Spinodal dewetting of thin polymer films, Phys. Rev. Lett. 81 (6) (1998), 1251–1254.

    Google Scholar 

  103. W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids 11 (9) (1999), 2454–2462.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Witelski, T.P. (2002). Computing finite-time singularities in interfacial flows. In: Bourlioux, A., Gander, M.J., Sabidussi, G. (eds) Modern Methods in Scientific Computing and Applications. NATO Science Series, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0510-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0510-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0782-8

  • Online ISBN: 978-94-010-0510-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics