Skip to main content

1-D and 2-D Double Heteronuclear Magnetic Resonance Study of the Local Structure of Type B Carbonate Fluoroapatite

  • Chapter
Magnetic Resonance in Colloid and Interface Science

Part of the book series: NATO Science Series ((NAII,volume 76))

Abstract

The local structure of a type B carbonate fluoroapatite has been investigated by 1-D and 2-D 13C1H/19F and 31P1H/19F MAS Nuclear Magnetic Resonance. The results clearly show the existence of two type B carbonated sites and three fluorine sites. One of the CO3 2 sites is located near the apatite surface and in very close proximity to strongly adsorbed water. The other type is close to two of the three fluorine sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Labarthe J. C., Bonel G. and Montel G. (1973) Sur 1a structure et les propriétés des apatites carbonatées de type B phospho-calciques, Annales de Chimie 8, 289–301.

    CAS  Google Scholar 

  2. Legeros R. Z. (1967) Crystallographic studies of the carbonate substitutions in the apatite structure, PhD Thesis, New York University.

    Google Scholar 

  3. Elliott J. C., Bonel G. and Trombe J. C. (1980) Space group lattice constants of Ca10(PO4)6CO3, Journal of Applied Crystallography 13,618–621.

    Article  CAS  Google Scholar 

  4. Bonel G. (1972) Contribution à l’étude de la carbonation des apatites I. Synthèse et études propriétés physico-chimiques des apatites carbonatées de type A, Annales de Chimie 7, 65–88.

    CAS  Google Scholar 

  5. Wilson R. M., Elliott J. C. and Dowker S. E. P. (1999) Rietveld refinement of crystallographic struture of human dental enamel, American Mineralogist 84, 1406–1414.

    CAS  Google Scholar 

  6. Morgan H., Wilson R.M., Elliott J. C., Dowker S. E. P. and Anderson P. (2000) Preparation and characterization of monoclinic hydroxyapatite and its precipitated carbonate apatite, Biomaterials 21, 617–627.

    Article  CAS  Google Scholar 

  7. Merry J. C., Gibson I. R., Best S. M. and Bonfield W. (1998) Synthesis and characterization of carbonate hydroxyapatite, Journal of Materials Science: Materials in Medicine 9, 779–783.

    Article  CAS  Google Scholar 

  8. Doi Y, Moriwaki Y., Aoba T., Okazaki M., Takahashi J., Joshin K. (1982) Carbonate apatite from aqueous and non-aqueous media studied by ESR, IR and X-ray diffraction: effect of NH4 + ions on crystallographic parameters, Journal of Dental Research 61, 429–434.

    Article  CAS  Google Scholar 

  9. Xu G., Aksay I. A. and Groves J. T. (2001) Continuous crystalline carbonate apatite thin film. A biomimetic approach, Journal of the American Chemical Society 123, 2196–2203.

    Article  CAS  Google Scholar 

  10. Rey C. and Hina A. (1995) Surface reactivity of bone mineral crystals, a model for bioactive orthopaedic materials, Bioceramics 8, 55–60.

    CAS  Google Scholar 

  11. Elliott J. C. (1964) The crystallographic structure of dental enamel and related apatites, PhD Thesis, Unversity of London.

    Google Scholar 

  12. Elliott J. C., Holcomb D. W. and Young R. A. (1985) Infrared determination of degree of substitution of hydroxyl by carbonate ions in human dental enamel, Calcified Tissue International 37, 372–375.

    Article  CAS  Google Scholar 

  13. Rey C., Renugopalakrishman V., Shimizu M., Collins B. and Glimcher M. J. (1991) A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of CO3 2-ion in the mineral phase of enamel during its formation and maturation, Calcified Tissue International 49, 259–268.

    Article  CAS  Google Scholar 

  14. Suetsugu Y., Shimoya I. and Tanaka J. (1998) Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy, Journal of the American Ceramic Society 81, 746–748.

    Article  CAS  Google Scholar 

  15. Nelson D. G. A. and Williamson B. E. (1982) Low temperature laser Raman spectroscopy of synthetic carbonated apatites and dental enamel, Australian Journal of Chemistry 35, 715–727.

    Article  CAS  Google Scholar 

  16. Pekauskas R. A. and Pullman I. (1978) Radiogenic free radicals as molecular probes in bone, Calcified Tissue Research 25, 37–43.

    Article  Google Scholar 

  17. Beshah K., Rey C., Glimcher M. J., Schimizu M. and Griffin R. G. (1990) Solid state carbon-13 and proton NMR studies of carbonate containing apatite and enamel, Journal of Solid State Chemistry 84, 71–81.

    Article  CAS  Google Scholar 

  18. Boivin G., Chavassieux P., Chapuy M.C., Baud C.A. and Meunier P. J. (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients, Bone 10,89–99.

    Article  CAS  Google Scholar 

  19. Boivin G., Chavassieux P., Chapuy M.C., Baud C.A. and Meunier P. J. (1990) Skeletal fluorosis: histomorphometric findings, Journal of Bone Mineral Research, 5, 185–189.

    Article  Google Scholar 

  20. Teotia S. P. S., Teotia M. and Teotia N. P. S. (1976) Skeletal fluorosis: roentgenological and histopathological study, Fluoride 9, 91–98.

    Google Scholar 

  21. Boivin G., Chapuy M.C., Baud C. A. and Meunier P. J. (1988) Fluoride content in the human illiac bone, results in controls, patients with fluorosis, and osteoporotic patients treated with fluoride. Journal of Bone Mineral Research 3, 497–502.

    Article  CAS  Google Scholar 

  22. Mamelle N., Meunier P. J., Dusan R., Guillaume M., Martin J. L., Gaucher A., Prost A., Zeigler G. and Netter P. (1988) Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis, Lancet 2, 361–365.

    Article  CAS  Google Scholar 

  23. Riggs B. L., Hodgson S. F., O’Fallon W. M., Chao E. Y. S., Wahner H. W., Muhs J. M., Cedel S. L. and Melton L. J. (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis, New England journal of Medicine 322, 802–809.

    Article  CAS  Google Scholar 

  24. Vignoles M. (1984) Contribution à l’étude des apatites carbonatées de type B, Thèse d’Etat INPT, Toulouse, France.

    Google Scholar 

  25. Chariot G. (1966) Les méthodes de la chimie analytique, Masson, Paris.

    Google Scholar 

  26. MacConnel D. (1973) Apatite, its crystal chemistry, mineralogy, utilization and geologic and biologic occurrences. Springer Verlag, New York.

    Google Scholar 

  27. Wu Y., Glimcher M. J., Rey C. and Ackerman J. L. (1994) A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphate: Identification by phosphorus-31 solid state NMR spectroscopy. Journal of Molecular Biology 244, 423–435.

    Article  CAS  Google Scholar 

  28. Wu X., Zhang S. and Wu X. (1988) Selective polarization inversion in solid state high resolution CP MAS NMR, Journal of Magnetic Resonance 77, 343–347.

    CAS  Google Scholar 

  29. Wu X. and Zilm K. W. (1993) Complete spectral editing in CP-MAS NMR, Journal of Magnetic Resonance A102, 205–213.

    Google Scholar 

  30. Sangil R., Rastrup-Andersen N., Bildsoe H. Jakobsen H. J. and Nielsen N. C. (1994) Optimized spectral editing of 13C MAS NMR spectra of rigid solids using cross-polarization methods, Journal of Magnetic Resonance A107, 67–78.

    Google Scholar 

  31. Zumbulyadis N. (1987) 1H/29Si cross polarization dynamics in amorphous hydrogenated silicon, Journal of Chemical Physics 86, 1162–1166.

    Article  CAS  Google Scholar 

  32. Gory D. G. and Ritchey W. M. (1989) Inversion recovery cross polarization NMR in solid semicrystalline polymers, Macromolecules 22, 1611–1675.

    Article  Google Scholar 

  33. Ernst R. R., Bodenhausen G. and Wokaun, G. (1994) Principles of nuclear magnetic resonance in one and two dimensions, Oxford University Press, New York.

    Google Scholar 

  34. Schmidt-Rohr K. and Spiess H. W. (1994) Multidimensional solid-state NMR and polymers, Academic Press, San Diego.

    Google Scholar 

  35. Vega A. J. (1988) Heteronuclear chemical shift correlations of silanol groups studied by two dimensional cross polarization/magic angle spinning NMR, Journal of the American Chemical Society 110, 1049–1054.

    Article  CAS  Google Scholar 

  36. Fyfe C. A., Zhang Y. and Aroca P. (1992) An alternative preparation of organofunctionalized silica gels and their characterization by two-dimensional high resolution solid-state heteronuclear NMR correlation spectroscopy, Journal of the American Chemical Society, 114, 3252–3255.

    Article  CAS  Google Scholar 

  37. Janicke M. T., Landry C. C., Christiansen S. C., Kumar D., Stucky G. D. and Chmelka, B. F. (1998) Aluminum incorporation and interfacial structures in MCM-41 mesoporous molecular sieves, Journal of American Chemical Society 120, 6940–6951.

    Article  CAS  Google Scholar 

  38. Fisher L., Harlé V., Kasztelan S., Man P. P. and d’Espinosse de la Caillerie J. B. (2000) Identification of fluorine sites at the surface of fluorinated γ-alumina by two-dimensional MAS NMR, Solid State Nuclear Magnetic Resonance 16, 85–91.

    Article  Google Scholar 

  39. Santos R. A., Wind R. A. and Bronnimann C. E. (1994)1H CRAMPS and 1H-3IP HetCor experiment on bone, bone mineral and model calcium phosphate, Journal of Magnetic Resonance B105, 183–187.

    Google Scholar 

  40. Freund F. and Knobel R. M. (1977) Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, Journal of Chemical Society, Dalton Transactions 10, 1136–1140.

    Article  Google Scholar 

  41. Yesinowski J. P. and Eckert H. (1987) Hydrogen environments in calcium phosphates: 1H MAS NMR at high spinning speeds. Journal of the American Chemical Society 109, 6274–6282.

    Article  CAS  Google Scholar 

  42. Yesinowski J. P, Wolfang R. A. and Mobley M. J. (1984), New NMR methods for the study of hydroxyapatite surface, Adsorption on/and Surface Chemistry of Apatites, ed. Miskra D.N., Plenium Press, New York, 151–175.

    Google Scholar 

  43. Yesinowski J. P. and Mobley M. J. (1983) 19F MAS NMR of fluoridated hydroxyaptite surfaces,. Journal of the American Chemical Society 105, 6191–6193.

    Article  CAS  Google Scholar 

  44. Kreinbrink A. T., Sazavsky C. D., Pyrz J. W., Nelson D. G. A. and Honkonen R. S., (1990) Fast magic angle spinning 19F NMR of inorganic fluorides and fluoridated apatitic surfaces, Journal of Magnetic Resonance 88, 267–276.

    CAS  Google Scholar 

  45. Braun M. and Jana C. (1995) 19F NMR spectroscopy of fluoridated apatites, Chemical Physics Letters 245, 19–22.

    Article  CAS  Google Scholar 

  46. Braun M., Hartmann P. and Jana C. (1995) 19F and 3IP NMR spectroscopy of calcium apatites, Journal of Materials Science: Materials in Medicine 6, 150–154.

    Article  CAS  Google Scholar 

  47. Iijima M., Nelson D.G.A., Pan Y., Kreinbrink A. T., Adachi M., Goto T and Moriwaki Y. (1996) Fluoride analysis of apatite crystals with a central planar OCP inclusion: Concerning the role of F ions on apatite/OCP/apatite structure formation, Calcified Tissue International 59, 377–384.

    Article  CAS  Google Scholar 

  48. Vignoles M., Bonel G. and Young R. A. (1987) Occurrence of nitrogenous in precipitated B-type carbonated hydroxyapatites, Calcified Tissue International 40, 64–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sfihi, H., Rey, C. (2002). 1-D and 2-D Double Heteronuclear Magnetic Resonance Study of the Local Structure of Type B Carbonate Fluoroapatite. In: Fraissard, J., Lapina, O. (eds) Magnetic Resonance in Colloid and Interface Science. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0534-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0534-0_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0787-3

  • Online ISBN: 978-94-010-0534-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics