Skip to main content

DNA Condensation and Complexation

Biological Implications

  • Conference paper
Electrostatic Effects in Soft Matter and Biophysics

Part of the book series: NATO Science Series ((NAII,volume 46))

  • 878 Accesses

Abstract

A primary aim of these lectures is to introduce two structural motifs in biology that have provided the motivation for many recent studies of electrostatic effects in solutions of macro-ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cairns, J., Stent, G.S. and Watson, J.D., eds. (1992) Phage and the Origins of Molecular Biology, Cold Spring Harbor Laboratory Press, Plainview.

    Google Scholar 

  2. See Figure 10-27, p. 288 in Griffiths, A. J. F., Miller, J.H, Suzuki, Lewontin, R. C, and Gelbart, W. M. (1993) An Introduction to Genetic Analysis, Freeman, New-York.

    Google Scholar 

  3. See Figure 10-19 (a), p. 283 in reference 2.

    Google Scholar 

  4. Khokhlov, A. N. and Grosberg, Y. A. (1994) Statistical Physics of Macromolecules, AIP Press, New York.

    Google Scholar 

  5. Lambda DNA Packaging System (trademark: Packagene), information found at http://www.promega.com.

  6. Hafner, E.W., Tabor, C.W. and Tabor, H. (1979) Mutants of E. Coli That Do Not Contain Putrescine or Spermidine, J. Biol. Chem. 254, 12419–12426.

    Google Scholar 

  7. See, for example, Gronbech-Jensen, N., Mashl, R.J., Bruinsma, R.F. and Gelbart, W.M. (1997) Counterion-Inducted Attraction between Rigid Polyelectrolytes, Phys. Rev. Lett. 78. 2477–2480; Ha, B.-Y. and Liu, A.J. (1997) Counterion-Mediated Attraction between Two Like-Charged Rods, Phys. Rev. Lett. 79, 1289-1292 and references to earlier works contained therein.

    Article  ADS  Google Scholar 

  8. Bloomfield, V.A. (1991) Condensation of DNA by Multivalent Cations: Considerations of Mechanism, Biopolymers 31, 1471–1481.

    Article  Google Scholar 

  9. Lerman, L.S. (1995) Chromosomal Analogues: Long-range Order in Ψ-Condensed DNA, Cold Spring Harbor Symposia of Quantitative Biology 38, 59–73 and Ubbink, J. and Odijk, T. (1995) Polymer-and Salt-Induced (PSI) Toroids of Hexagonal DNA, Biophys. J. 68, 54-61.

    Google Scholar 

  10. Tang, J.X., Ito, T., Tao, T., Traub, P. and Janmey, P. (1997) Opposite Effects of Electrostatics and Steric Exclusion on Bundle Formation by F-Actin and other Filamentous Polyelectrolytes, Biochem. 36, 12600–12607 and references cited therein.

    Article  Google Scholar 

  11. Rayleigh, Lord J.W.S. (1882) On the Equilibrium of Liquid Conducting Masses Charged with Electricity, Phil. Mag. 14, 184–186.

    Article  Google Scholar 

  12. Post, C.B. and Zimm, B.H. (1982) Theory of DNA Condensation: Collapse vs. Aggregation, Biopolymers 21, 2123–2137.

    Article  Google Scholar 

  13. See, for example, Dobrynin, A.V., Rubinstein, M. and Obukhov, S.P. (1996) Cascade of Transitions of Polyelectrolytes in Poor Solvents, Macromolecules 29, 2974–79 and references contained therein.

    Article  ADS  Google Scholar 

  14. Micka, U., Holm, C. and Kremer, K. (1999) Strongly Charged, Flexible Polyelectrolytes in Poor Solvent: Molecular Dynamics Simulations, Langmuir 15, 4033–4044.

    Article  Google Scholar 

  15. Andelman, D., Brochard, F., Knobler, CM. and Rondelez, F. (1994) Chapter 12 in Gelbart, W.M. (ed.) Microemulsions and Monolayers, Springer-Verlag, New York.

    Google Scholar 

  16. Seul, M. and Andelman, D. (1995) Shapes and Patterns: The Phenomenology of Modulated Phases, Science 267, 476–483 and references contained therein.

    Article  ADS  Google Scholar 

  17. Ruiz-Garcia, J., Gamez-Corrales, R. and Ivlev, B. (1997) Foam and Cluster Structure Formation by Latex Particles at the Air/Water Interface, Physica A 236, 97–104.

    Article  ADS  Google Scholar 

  18. Sear, R. P., Chung, S.-W., Markovich, G., Gelbart, W.M. and Heath, J.R. (1999) Spontaneous Patterning of Quantum Dots at the Air-Water Interface, Phys. Rev. E 59, R6255–R6258.

    Article  ADS  Google Scholar 

  19. Grosberg, A. Yu and Zhestov, A.V. (1986) On the Compact Form of Linear Duplex DNA, J. Biomol. Struct. Dynam. 3, 859–872.

    Article  Google Scholar 

  20. Park, S.Y., Harries, D. and Gelbart, W.M. (1998) Topological Defects and the Optimum Size of DNA Condensates, Biophys. J. 75, 714–720.

    Article  ADS  Google Scholar 

  21. Ha, B.-Y. and Liu, A.J. (1999) Kinetics of Bundle Growth in DNA Condensation, Europhys. Lett. 46, 624–630.

    Article  ADS  Google Scholar 

  22. Stroobants, A., Lekkerkerker, H.M.W. and Odijk, T. (1986) Effect of Electrostatic Interaction on the Liquid-Crystal Phase-Transition in Solutions of Rodlike Polyelectrolytes, Macromolecules 19, 2232–2238.

    Article  ADS  Google Scholar 

  23. Lambert, O., Letellier, L., Gelbart, W.M. and Rigaud, J.-L. (2000) Delivery by Phage as a Strategy for Encapsulating Toroidal Condensates of Arbitrary Size into Liposomes, Proc. Nat. Acad. Sci. (USA) 97, 7248–7253.

    Article  ADS  Google Scholar 

  24. Riemer, S.C. and Bloomfield, V.A. (1978) Bacteriophage Heads: Some Considerations on Energetics, Biopolymers 17, 785–794.

    Article  Google Scholar 

  25. Ames, B. and Dubin, D.T. (1960) The Role of Polyamines in the Neutralization of Bacteriophage DNA, J. Biol. Chem. 235, 769–775.

    Google Scholar 

  26. Odijk, T. (1998) Hexagonally Packed DNA within Bacteriophage T7 Stabilized by Curvature Stress, Biophys. J. 75, 1223–1227.

    Article  ADS  Google Scholar 

  27. Cerritelli, M.E., Cheng, N., Rosenberg, A.H., McPherson, C.E., Booy, F.P. and Steven, A.C. (1997) Encapsidated Conformation of Bacteriophage T7 DNA, Cell 91, 271–280.

    Article  Google Scholar 

  28. Kindt, J., Tzlil, S., Ben-Shaul, A. and Gelbart, W.M. (preprint) DNA Packaging and Ejection Forces in Bacteriophage.

    Google Scholar 

  29. Ermak, D. L. and McCammon, J. A. (1978), Brownian Dynamics with Hydrodynamic Interactions, J. Chem. Phys. 69, 1352–1360.

    Article  ADS  Google Scholar 

  30. Rau, D. C. and Parsegian, V. A. (1992) Direct Measurement of the Intermolecular Forces between Counterion-Condensed DNA Double Helices. Evidence for Long Range Attractive Hydration Forces, Biophys. J. 61, 246–259.

    Article  Google Scholar 

  31. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution, Nature 389, 251–260.

    Article  ADS  Google Scholar 

  32. This figure is a copy of Figure 8-9 (B), attributed to Victoria Foe, page 343, in: Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (1994) Molecular Biology of the Cell, 3rd edition, Garland, New York.

    Google Scholar 

  33. Kornberg, R.D. (1974) Chromatin Structure: A Repeating Unit of Histones and DNA, Science 184, 868–71.

    Article  ADS  Google Scholar 

  34. Olins, A.L. and Olins, D.E. (1974) Spheroid Chromatin Units (v Bodies), Science 183, 330–332.

    Article  ADS  Google Scholar 

  35. Widom, J. (1986) Physicochemical Studies of the Folding of the 100A Nucleosome Filament into the 300A Filament, J. Mol. Biol. 190, 411–424.

    Article  Google Scholar 

  36. See, for example, the systematic and critical review by Widom, J. (1998) Structure, Dynamics, and Function of Chromatin in Vitro, Ann. Rev. Biophys. Biomol. Struct. 27, 285–327 and reference contained therein.

    Article  Google Scholar 

  37. Yager, T.D., McMurray, C.T. and van Holde, K.E. (1989) Salt-Induced Release of DNA from Nucleosome Core Particles, Biochemistry 28, 2271–81.

    Article  Google Scholar 

  38. Mateescu, E.M., Jeppesen, C. and Pincus, P. (1999) Overcharging of a Spherical Macroion by an Oppositely Charged Polyelectrolyte, Europhys. Lett. 46, 493–498.

    Article  ADS  Google Scholar 

  39. Nguyen, T.T. and Shklovskii, B.I. (preprint) Overcharging of a Macroion by an Oppositely Charged Polyelectrolyte.

    Google Scholar 

  40. Kunze, K.-K. and Netz, R. (2000) Salt-Induced DNA-Histone Complexation, Phys. Rev. Lett. 85, 4389–4392.

    Article  ADS  Google Scholar 

  41. Radler, J.O., Koltover, L, Salditi, T., and Safinya, C.R. (1997) Structure of DNA-Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes, Science 275, 810–814.

    Article  Google Scholar 

  42. See chapter by J. O. Radler in this book.

    Google Scholar 

  43. Harries, D., May, S., Gelbart, W.M. and Ben-Shaul, A. (1998) Structure, Stability, and Thermodynamics of Lamellar DNA-Lipid Complexes, Biophys. J. 75, 159–173.

    Article  ADS  Google Scholar 

  44. Wagner, K., Harries, D., May, S., Kahl, V., Radler, J.O. and Ben-Shaul, A. (2000) Direct Evidence for Counterion Release upon Cationic Lipid-DNA Condensation, Langmuir 16, 303–306.

    Article  Google Scholar 

  45. Rouzina, I. and Bloomfield, V.A.(1996) Competitive Electrostatic Binding of Charged Ligands to Polyelectrolytes: Planar and Cylindrical Geometries, J. Phys. Chem. 100, 4292–4304.

    Article  Google Scholar 

  46. Oosawa, F. (1971) Polyelectrolytes, Marcel Dekker, New York.

    Google Scholar 

  47. Alexander, S., Chaikin, P.M., Grant, P., Morales, G.J., Pincus, P. and Hone, D. (1984) Charge Renormalization, Osmotic Pressure, and Bulk Modulus of Colloidal Crystals: Theory, J. Chem. Phys. 80, 5776–5781.

    Article  ADS  Google Scholar 

  48. Park, S.Y., Bruinsma, R.F. and Gelbart, W.M. (1999) Spontaneous Overcharging of Macro-ion Complexes, Europhys. Lett. 46, 454–460.

    Article  ADS  Google Scholar 

  49. Schiessel, H., Bruinsma R. and Gelbart W.M., J. Chem. Phys., in press

    Google Scholar 

  50. Nguyen, T.T. and Shklovskii, B.I. (2001) Complexation of a Polyelectrolyte with Oppositely Charged Spherical Macroions: Giant Inversion of Charge, J. Chem. Phys. 114, 5905–5916 and Nguyen, T.T., Grosberg, A. Yu and Shklovskii, B.I. (2000) Screening of a Charged particle by Multivalent Counterions in Salty Water: Strong charge Inversion, J. Chem. Phys. 113, 1110-1125.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gelbart, W.M. (2001). DNA Condensation and Complexation. In: Holm, C., Kékicheff, P., Podgornik, R. (eds) Electrostatic Effects in Soft Matter and Biophysics. NATO Science Series, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0577-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0577-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0197-0

  • Online ISBN: 978-94-010-0577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics