Skip to main content

Crystalline Silicon P-N Junction Solar Cells — Efficiency Limits And Low-Cost Fabrication Technology

  • Chapter
Photovoltaic and Photoactive Materials — Properties, Technology and Applications

Part of the book series: NATO Science Series ((NAII,volume 80))

  • 683 Accesses

Abstract

Economic growth depends on energy use. Worldwide, energy accounts for 25 to 30% of the present investments in development and economic growth. The highest future energy needs are envisaged for developing countries, where 90% of world’s population growth will take place. In poorer economies, an average person annually uses only 2.5 to 10 percent of the commercial fuels used in Europe, Japan or the USA [1,2], and around 2 billion people are still not connected to an electric grid [3], As the Third World countries become increasingly industrialised, the growth in energy demand is increasing rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, G.R. (1990) Energy for planet earth, Scientific American 263,21–27.

    Article  Google Scholar 

  2. Amulya, K.N. and Goldemberg, J. (1990) Energy for the developing world, Scientific American 263, no. 3, 63–71.

    Google Scholar 

  3. Palz, W. (1994) Power for the world: a global photovoltaic action plan, Proc. 12th. European PVSolar Energy Conf., 2086–2088.

    Google Scholar 

  4. Hoagland, W. (1995) Solar energy, Scientific American 273, 170–173.

    Google Scholar 

  5. Holdren, J.P. (1990) Energy in transition, Scientific American 263, 109–115.

    Article  Google Scholar 

  6. Weinberg, C.J. and Williams, R.H. (1990) Energy from the sun, Scientific American 263, 99–106.

    Article  Google Scholar 

  7. Thekaekra, M.P. (1974) Data on incident solar energy, Suppl. Proc. 20th Annual Meeting Inst. Environ. Sci. 21.

    Google Scholar 

  8. Nijs, J. (1994) Photovoltaic cells and modules: technical and economic outlook towards the year 2000, Int J. Solar Energy 15, 91–122.

    Article  Google Scholar 

  9. Chapin, D.M., Fuller, CS. and Pearson, G.L. (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25,676–677.

    Article  Google Scholar 

  10. Backus, C.E. (1984) Principles of photovoltaic conversion, in G. Furlan, N.A. Mancini and A.A.M. Sayigh (eds.) Nonconventional Energy Plenum Publishing, pp. 297–348.

    Google Scholar 

  11. Kolodinski, S., Werner, J.H. and Queisser, H.J. (1994) Quantum efficiency exceeding unity in silicon leading to novel selection principles for solar cell materials, Sol. Energy Mat. Sol. Cells 33, 275–285.

    Article  Google Scholar 

  12. Keevers, M.J. and Green, M.A. (1993) Efficiency improvements of silicon solar cells by the impurity photovoltaic effect, Proc. 23rd IEEE PV Specialist Conference, 140–146.

    Google Scholar 

  13. Green, M.A. (1984) Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process, IEEE Trans. Electron Dev. ED-31, 671–678.

    Article  Google Scholar 

  14. Shockley, W. and Queisser, H.J. (1961) Detailed balance limit on efficiency of p-n junction solar cells J. Appl. Phys. 32, 510–519.

    Article  Google Scholar 

  15. Tiedje, T., Yablonovitch, E., Cody, G. and Brooks, B.G. (1984) Limiting efficiency of silicon solar cells IEEE Trans. Electron Dev. ED-31, 711–716.

    Article  Google Scholar 

  16. Campbell, P. and Green, M.A. (1987) The limiting efficiency of silicon solar cells under concentrated sunlight, IEEE Trans. Electron Dev. ED-33, 234–239.

    Google Scholar 

  17. Green, M.A. (1987) High efficiency solar cell, Trans Tech Publications.

    Google Scholar 

  18. Zhao, J., Wang, A., Altermatt, P.P., Wenham, SR. and Green, M.A. (1996) 24% efficient PERL silicon solar cell: recent improvement in high efficiency silicon cell research, Solar Energy Materials and Solar Cells 41/42, 87–99.

    Article  Google Scholar 

  19. Green, M.A., Wenham, S.R. and Zhao, J. (1992) High efficiency silicon solar cells, Proc. 11th European PV Solar Energy Conference, 41–44.

    Google Scholar 

  20. Swanson, R., Verlinden, P., Crane, R. and Tilford, C. (1992) High efficiency silicon solar cells, Proc. 11th European PV Solar Energy Conference, 35–40.

    Google Scholar 

  21. Schwarz, R.J. (1982) Review of silicon solar cells for high concentration, Solar Cells 6, 17–38.

    Article  Google Scholar 

  22. King, R.R. (1990) Studies of oxide-passivated emitters in silicon and applications to solar cells, Ph.D. Thesis, Stanford University.

    Google Scholar 

  23. Sinton, R.A. and Swanson, R.M. (1987) An optimization study of Si point-contact concentrator solar cells, Proc. 19th IEEE PV Specialist Conference, 1201–1208.

    Google Scholar 

  24. Maycock, P. (2001) PV-News, February 2001.

    Google Scholar 

  25. King, R.J. (1998) Opening remarks, Proc. 8th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Colorado, 1–6.

    Google Scholar 

  26. Willeke, G., Nussbaumer, H., Bender, H. and Bucher, E. (1992) A simple and effective light trapping technique for polycrystalline silicon solar cells, Solar Energy Materials and Solar Cells 26,345–356.

    Article  Google Scholar 

  27. De Wolf, S., Choulat, E., Vazsonyi, E., Einhaus, R., Van Kerschaver, E., Declercq, K., and Szlufcik, J. (2000) Towards industrial application of isotropic texturing for multi-crystalline silicon solar cells Proc. 16th European Photovoltaic Solar Energy Conf, Glasgow, 1521–1524.

    Google Scholar 

  28. Inomata, Y., Fukui, K. and Shirasawa, K. (1997) Surface texturing of large area multicrystalline Si solar cells using reactive ion etching method, Solar Energy Materials and Solar Cells 48, 237–242.

    Article  Google Scholar 

  29. Dekkers, H., Duerinckx, F., Szlufcik, J. and Nijs, J. (2000) Silicon surface texturing in a chlorine plasma Proc. l6th ECPVSEC, 1532–1535.

    Google Scholar 

  30. Ruby, D., Zaidi, S., Narayanan, S., Damani, B. and Rogathi, A. (2001) RIE-texturing of multicrystalline silicon solar cells, Tech. Digest Intern. PVSEC-12, Korea, 273–274.

    Google Scholar 

  31. Demesmaeker, E. (1993) PhD Thesis, Kath. Univ. Leuven, Belgium.

    Google Scholar 

  32. Horzel, J., Szlufcik, J. and Nijs, J. (2000) High efficiency industrial screen printed selective emitter solar cells. Proc. 16th European Photovoltaic Solar Energy Conf, Glasgow, 1113–1115.

    Google Scholar 

  33. Rohatgi, A., Hilali, M., Meier, D., Ebong, A., Honsberg, C, Carroll, A. and Hacke, P. (2001) Self-align self-doping selective emitter for screen-printed silicon solar cells Proc. 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, in press.

    Google Scholar 

  34. Kinderman, R., Bultman, J., Hoornstra, J., Koppes, M. and Weeber, A. (2001) First xSi cell results using selective emitters formed with diffusion barriers in one step Tech. Digest Intern. PVSEC-12, Korea, 229–230.

    Google Scholar 

  35. Szlufcik, J. and Duerinckx, F. (2001) Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride Symposium E, E-MRS Spring Meeting, 2001: Crystalline Silicon for Solar Cells, Strasbourg, France; Solar Energy Materials and Solar Cells, in press.

    Google Scholar 

  36. Aberle, A. (2001) Overview on SiN surface passivation of crystalline silicon solar cells, Sol. Energy Materials and Solar Cells 65,239.

    Article  Google Scholar 

  37. Lolgen, P., Leguit, C, Eikelboom, J.A., Steeman, R.A., Sinke, W.C, Verhoef, L.A., Alkemande, P.F.A. and Algra, E. (1993) Aluminium back surface field doping profile with surface recombination velocities below 200 cm/sec Proc. 23rd IEEE PVSC, 236–242.

    Google Scholar 

  38. Narasimha, S. and Rogathi, A. (1997) Optimised aluminium back surface field techniques for silicon solar cells, Proc. 26th IEEE PVSC, 63–66.

    Google Scholar 

  39. Duerinckx, F., Allebé, C. and Szlufcik, J. (2000) Enhanced passivation for multicrystalline silicon solar cells by co-sintering of PECVD-SiNx and aluminium. Proc. 10th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Colorado, 190.

    Google Scholar 

  40. Rohatgi, A., Yelundur, V. and Jeong, J. (2001) Lifetime enhancement and low-cost technology development for high efficiency manufacturable silicon solar cells Proc. 11th Workshop on crystalline silicon solar cells materials and processes, Colorado, 80–84.

    Google Scholar 

  41. Duerinckx, F., Frisson, L, Michiels, P.P., Choulat, P. and Szlufcik, J. (2001) Towards highly efficient cells and modules from multicrystalline silicon, Proc. 17th European Photovoltaic Solar Energy Conference and Exhibition Munich, Germany, in press.

    Google Scholar 

  42. Arimoto, S., Nakatani, M., Nishimoto, Y., Morikawa, H., Hayashi, M., Namizaki, H. and Namba, K. (2000) Simplified mass-production process for 16% efficiency multicrystalline Si solar cells. Proc. 28th IEEE PVSC, Alaska, USA, 188–193.

    Google Scholar 

  43. Fujii, S., Fukawa, Y., Takahashi, H., Inomata, Y., Okada, K., Fukui, K. and Shirasawa, K. (2001) Production technology of large area multicrystalline silicon solar cells, Solar Energy Materials and Solar Cells 65, 269–275.

    Article  Google Scholar 

  44. Final publishable report of the EC funded HIT project, to be published.

    Google Scholar 

  45. Szlufcik, J., Sivoththaman, S., Nijs, J., Mertens, R. and Van Overstraeten, R. (1997) Low-cost industrial technologies of crystalline silicon solar cells, Proc. IEEE 85 (5), 709–730.

    Article  Google Scholar 

  46. Hanoka, J. (2001) An overview of silicon ribbon growth technology, Solar Energy Materials and Solar Cells 65, 231–237.

    Article  Google Scholar 

  47. Sarti, D., private communication.

    Google Scholar 

  48. Van Kerschaver, E. (2001) PhD Thesis Kath. Univ. Leuven, Belgium.

    Google Scholar 

  49. Mittelstadt, L., Dauwe, S., Metz, A., Hezel, R. et al., Proc. 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, to be published

    Google Scholar 

  50. Glunz, S., Dicker, J., Kray, D., Lee, J., Preu, R., Rein, S., Schneiderlochner, E., Solter, J., Warta, W. and Willeke, G. (2001) High-efficiency cell structures for medium-quality silicon, Proc. 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, to be published

    Google Scholar 

  51. Van Kerschaver, E., De Wolf, S. and Szlufcik, J. (2000) Proc. 16th European Photovoltaic Solar Energy Conf, Glasgow, 1517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szlufcik, J. (2002). Crystalline Silicon P-N Junction Solar Cells — Efficiency Limits And Low-Cost Fabrication Technology. In: Marshall, J.M., Dimova-Malinovska, D. (eds) Photovoltaic and Photoactive Materials — Properties, Technology and Applications. NATO Science Series, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0632-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0632-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0824-5

  • Online ISBN: 978-94-010-0632-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics