Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 35))

  • 339 Accesses

Abstract

We discuss geometrical aspects of different dualities in the integrable systems of the Hitchin type and its various generalizations. It is shown that T duality known in the string theory context is related to the separation of variables procedure in dynamical systems. We argue that there are analogues of S duality as well as mirror symmetry in many-body systems of Hitchin type. The different approaches to double elliptic systems are unified using the geometry behind the Mukai-Odesskii algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruijsenaars, S. (1988) Comm. Math. Phys. 115, 127–165; (199) Finite-Dimensional Soliton Systems, in B. Kupershmidt (ed.) Integrable and Super-Integrable Systems, World Scientific, Singapore; (1994-1995) Action-Angle Maps and Scattering Theory for Some Finite-Dimensional Integrable Systems II, III, Publ. RIMS, Kyoto Univ. 30, 865-1008 and 31, 247-353.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Fock, V., Gorsky, A., Nekrasov, N. and Roubtsov, V. (1999) Preprint hepth/9906235.

    Google Scholar 

  3. Gorsky, A., Nekrasov, N. and Roubtsov, V. (1999) Preprint hepth/9901089.

    Google Scholar 

  4. Sklyanin, E. (1995) Preprint solv-int/9505003.

    Google Scholar 

  5. Olshanetsky, M. and Perelomov, A. (1981) Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71, 313; (1983) Quantum integrable systems related to Lie algebras, Phys. Rep. 94, 6.

    Article  MathSciNet  ADS  Google Scholar 

  6. Kazhdan, D., Kostant, B. and Sternberg, S. (1978) Hamiltonian group action and dynamical systems of Calogero type, Comm. on Pure and Appl. Math. XXXI, 481–507.

    Article  MathSciNet  Google Scholar 

  7. Gorsky, A. and Nekrasov, N. (1994) Hamiltonian systems of Calogero type and two dimensional YM theory, Nucl. Phys. B414, 213–223.

    Article  MathSciNet  ADS  Google Scholar 

  8. Gorsky, A. and Nekrasov, N. (1995) Relativistic Calogero-Moser systems as gauged WZW theory, Nucl. Phys. B436, 582–608

    Article  MathSciNet  ADS  Google Scholar 

  9. Gorsky, A. and Nekrasov, N. (1994) Elliptic Calogero-Moser systems from two-dimensional current algebra, preprint hepth/9401021; Nekrasov, N. (1996) Holomorphic bundles and many-body systems, Comm. Math. Phys. 180, 587–604; Enriquez, B. and Rubtsov, V. (1996) Math. Phys. Lett 3, 343; Hurtubise, J. and Markman, E. (1999) Preprint hepth/9912161.

    Google Scholar 

  10. Arutyunov, G.E., Frolov, S.A. and Medvedev, P.B. (1997) Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group, J. Math. Phys. 38, 5682, hep-th/9608013; (1997) Elliptic Ruijsenaars-Schneider model via the Poisson reduction of the Affine Heisenberg Double, J. Phys. A30, 5051, hep-th/9607170.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Hitchin, N. (1987) Duke. Math. Jour. 54, 91.

    Article  MathSciNet  MATH  Google Scholar 

  12. Braden, H., Marshakov, A., Mironov, A. and Morozov, A. (1999) Preprint hepth/9906240.

    Google Scholar 

  13. Takasaki, K. (2000) Preprint math/0007073.

    Google Scholar 

  14. Etingof, P. and Varchenko, A. (1999) Preprint math/9907181; Felder, G., Markov, Y., Tarasov, V. and Varchenko, A. (2000) Preprint math/0001184; Tarasov, T. and Varchenko, A. (2000) Preprint math/0002132.

    Google Scholar 

  15. Gorsky, A. (2001) Phys.Lett. B498, 211, hepth/0010068.

    ADS  Google Scholar 

  16. Mironov, A. and Morozov, A. (2000) Phys. Lett. B475, 71, hepth/9912088.

    MathSciNet  ADS  Google Scholar 

  17. Matone, M. (1995) Phys. Lett. B357, 342, hep-th/9506102.

    MathSciNet  ADS  Google Scholar 

  18. Kuznetsov, V.B. and Sklyanin, E.K. (1996) Joum. of Phys. A29, 2779; Kuznetsov, V.B., Nijhoff, F.W. and Sklyanin, E.K. (1997) Comm. Math. Phys. 189, 855.

    Article  MathSciNet  ADS  Google Scholar 

  19. Krichever, I. and Phong, D. (1997) Preprint hep-th/9708170.

    Google Scholar 

  20. Enriquez, B., Feigin, B. and Roubtsov, V. (1996) Preprint q-alg/9605030.

    Google Scholar 

  21. Frenkel, E. (1995) Preprint q-alg/9506003.

    Google Scholar 

  22. Hurtubise, J. (1996) Duke. Math. Journal 83, 19–50.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilson, G. (1998) Inv. Math. 133, 1–41.

    Article  ADS  MATH  Google Scholar 

  24. Nakajima, H. (1996) Preprint alg-geom/9610021.

    Google Scholar 

  25. Nekrasov, N. and Schwarz, A. (1998) Instantons on noncommutative R**4 and (2,0) superconformal six dimensional theory, Commun. Math. Phys. 198, 689, hep-th/9802068; Braden, H. W. and Nekrasov, N. (1999) Space-time foam from non-commutative instantons, preprint hep-th/991201.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Mukai, S. (1988) Sugaku Expositions 1, No. 2, 139.

    Google Scholar 

  27. Odesskii, A. private communication.

    Google Scholar 

  28. Braden, H. Gorsky, A. and Roubtsov, V. (in preparation) Double elliptic systems from Mukai-Odesskii algebras.

    Google Scholar 

  29. Sklyanin, E. (1982) Funk. Anal. Appl. 16, 27.

    MathSciNet  Google Scholar 

  30. Krichever, I. and Zabrodin, A. (1995) Russ. Math. Surveys 50, 1101.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Hasegawa, K. (1995) Preprint q-alg/9512029; Antonov, A., Hasegawa, K. and Zabrodin, A. (1997) Nucl. Phys. B503, 747.

    Google Scholar 

  32. Kapustin, A. and Sethi, S. (1998) Adv. Theor. Math. Phys. bf 2, 571.

    MathSciNet  MATH  Google Scholar 

  33. Cherkis, S. and Kapustin, A. (2000) Preprints hepth/0006050, hepth/0011081.

    Google Scholar 

  34. Ganor, O.J., Mikhailov, A.Y. and Saulina, N. Constructions of non commutative instantons on T**4 and K(3), preprint hep-th/0007236; Cheung, Y.E., Ganor, O.J., Krogh, M. and Mikhailov, A.Y. (2000) Instantons on a non-commutative T(4) from twisted (2,0) and little-string theories, Nucl. Phys. B564, 259, hep-th/9812172.

    Google Scholar 

  35. Gorsky, A. and Mironov, A. (2000) Preprint hepth/0011197.

    Google Scholar 

  36. Nekrasov, N. (1997) Preprint hepth/9707111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gorsky, A., Rubtsov, V. (2001). Dualities in Integrable Systems: Geometrical Aspects. In: Pakuliak, S., von Gehlen, G. (eds) Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. NATO Science Series, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0670-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0670-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7184-7

  • Online ISBN: 978-94-010-0670-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics